Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38616398

RESUMO

In June 2023, severe leaf spots were noted in Populus × euramericana cv 'Nanlin95' plantations located in the Nanjing Baguazhou Wetland Park (32°09'16.97″N, 118°48'16.74″E) of Jiangsu Province and Populus × canadensis cv 'Sacrau 79' and Populus × canadensis cv 'Guariento' in the Liyuan Village in Nanyang City (32°53'43.70″N, 112°17'29.12″E) of Henan Province, respectively. The disease incidence in both locations could reach 97.9% (556 out of 568 trees) and 98.9% (2409 out of 2436 trees), respectively. The initial symptoms appear as numerous small and circular spots (1.59 to 3.18 mm in diameter) with gray or tan centers and dark-brown margins on the leaves. As the spots age, they sometimes enlarge, often coalesce, and may extend down the petioles. Diseased leaves and petioles were both surface sterilized with 75% ethanol for 30 seconds. With the aid of a hand lens, pycnidia (brown to black, spherical in profile, 90 to 250 µm diam) were easily picked out in the center of the spots and subsequently transferred into 1 mL sterilized water for preparing the spore suspension plated on KV8 medium amended with 100 mg/liter streptomycin sulfate and 50 mg/liter chloramphenicol. After 12 days of incubation, 86 single-spore isolates were obtained and identified as typical Septoria-like fungi according to morphological features, including slow-growing, gray or black colonies with pink mucilaginous matrix and hyaline, straight or curved conidia (size = 25 to 59 × 3.5 to 4 µm; septa = 1 to 6). Species identification was further validated by PCR amplification and sequencing of the internal transcribed spacer (ITS) region with ITS1/ITS4 primer pairs. Multiple sequence alignments with ClustalW revealed that the obtained ITS sequences of 86 isolates were 100% identical to each other. A BLAST search in GenBank indicated that the selfsame sequences of two representative isolates (isolate BGZ11 of Jiangsu Province, accession no. OR660379; isolate KZB22 of Henan Province, accession no. OR711499) shared 99.8% identity (494 of 495 bp) and 100% identity (504 of 504 bp) with related sequences of Sphaerulina musiva (Peck) Quaedvlieg, Verkley, and Crous (syn. = Septoria musiva Peck) in GenBank (MN275187; KF251619), respectively. Furthermore, we used a S. musiva-specific PCR assay (Abraham et al. 2018) on symptomatic leaf samples collected from the plantation. Each sample consisted of 20 cut-out leaf spots per leaf. Eight of the 10 samples were positive for S. musiva DNA. To confirm pathogenicity, six sterile tissue culture of poplar plants (Populus trichocarpa and Populus × euramericana cv 'Nanlin895') were respectively transplanted into pots and grown in a greenhouse for a week and for a month with an 18-h photoperiod augmented with sodium lamps and a 20°C (day)/16°C (night) temperature regime. Inoculations were conducted by spraying the plants with conidia suspension (106 conidia/mL) (LeBoldus et al. 2010). Control plants were sprayed with distilled water. Leaf spots were developed on the inoculated P. trichocarpa leaves at one week and P. × euramericana cv 'Nanlin895' leaves at 10 days after inoculation while no symptoms were observed on the control plants. The fungus S. musiva was successfully reisolated from all symptomatic leaves fulfilling Koch's postulates. Sphaerulina musiva only causes an endemic leaf spot disease on its natural North American host Populus. deltoides (Feau et al. 2010; Ostry 1987). However, on susceptible Populus species (e.g., P. balsamifera, P. trichocarpa, P. maximowiczii) and hybrids, S. musiva causes not only leaf spots but also severely damaging stem and branch cankers (Jeger et al. 2018; LeBoldus et al. 2009; Sondreli et al. 2020). To our knowledge, this is the first report of S. musiva causing leaf spots on poplar in China. Large-scale timber imports (e.g., cut branches, isolated bark, wood with and without bark) potentially lead to anthropogenic-facilitated transport of this pathogen. This outbreak of Septoria leaf spot underscores the potential threat of this pathogen to P. × euramericana in China, where it is widely planted as a keystone forestry species.

3.
Neuro Oncol ; 24(6): 888-900, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34951647

RESUMO

BACKGROUND: ATRX inactivation occurs with IDH1R132H and p53 mutations in over 80% of Grades II/III astrocytomas. It is believed that ATRX loss contributes to oncogenesis by dysregulating epigenetic and telomere mechanisms but effects on anti-glioma immunity have not been explored. This paper examines how ATRX loss contributes to the malignant and immunosuppressive phenotypes of IDH1R132H/p53mut glioma cells and xenografts. METHODS: Isogenic astrocytoma cells (+/-IDH1R132H/+/-ATRXloss) were established in p53mut astrocytoma cell lines using lentivirus encoding doxycycline-inducible IDH1R132H, ATRX shRNA, or Lenti-CRISPR/Cas9 ATRX. Effects of IDH1R132H+/-ATRXloss on cell migration, growth, DNA repair, and tumorigenicity were evaluated by clonal growth, transwell and scratch assays, MTT, immunofluorence and immunoblotting assays, and xenograft growth. Effects on the expression and function of modulators of the immune microenvironment were quantified by qRT-PCR, immunoblot, T-cell function, macrophage polarization, and flow cytometry assays. Pharmacologic inhibitors were used to examine epigenetic drivers of the immunosuppressive transcriptome of IDH1R132H/p53mut/ATRXloss cells. RESULTS: Adding ATRX loss to the IDH1R132H/p53mut background promoted astrocytoma cell aggressiveness, induced expression of BET proteins BRD3/4 and an immune-suppressive transcriptome consisting of up-regulated immune checkpoints (e.g., PD-L1, PD-L2) and altered cytokine/chemokine profiles (e.g., IL33, CXCL8, CSF2, IL6, CXCL9). ATRX loss enhanced the capacity of IDH1R132H/p53mut cells to induce T-cell apoptosis, tumorigenic/anti-inflammatory macrophage polarization and Treg infiltration. The transcriptional and biological immune-suppressive responses to ATRX loss were enhanced by temozolomide and radiation and abrogated by pharmacologic BET inhibition. CONCLUSIONS: ATRX loss activates a BRD-dependent immune-suppressive transcriptome and immune escape mechanism in IDH1R132H/p53mut astrocytoma cells.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Glioma , Astrocitoma/genética , Neoplasias Encefálicas/patologia , Carcinogênese , Glioma/patologia , Humanos , Isocitrato Desidrogenase/genética , Mutação , Microambiente Tumoral , Proteína Nuclear Ligada ao X/genética , Proteína Nuclear Ligada ao X/metabolismo
4.
Cancer Res ; 81(9): 2457-2469, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33574085

RESUMO

A subset of stem-like cells in glioblastoma (GBM; GSC) underlies tumor propagation, therapeutic resistance, and tumor recurrence. Immune evasion is critical for GSCs to carry out these functions. However, the molecular mechanisms employed by GSCs to escape antitumor immunity remain largely unknown. The reprogramming transcription factors Oct4 and Sox2 function as core multipotency factors and play an essential role in the formation and maintenance of GSCs, but the roles of these transcription factors in GSC immune escape have not been well explored. Here we examine how Oct4/Sox2 coexpression contributes to the immunosuppressive phenotype of GSCs. Combined transcription profiling and functional studies of Oct4/Sox2 coexpressing GSCs and differentiated GBM cells demonstrated that Oct4 and Sox2 cooperatively induce an immunosuppressive transcriptome consisting of multiple immunosuppressive checkpoints (i.e., PD-L1, CD70, A2aR, TDO) and dysregulation of cytokines and chemokines that are associated with an immunosuppressive tumor microenvironment. Mechanistically, induction and function of BRD/H3k27Ac-dependent immunosuppressive genes played a role in the immunosuppressive phenotype of GSCs. Pan-BET bromodomain inhibitors (e.g., JQ1) and shBRD4 constructs significantly inhibited the immunosuppressive transcriptome and immunosuppressive biological responses induced by Oct4/Sox2. Our findings identify targetable mechanisms by which tumor-propagating GSCs contribute to the immunosuppressive microenvironment in GBM. SIGNIFICANCE: This report identifies mechanisms by which the reprogramming transcription factors Oct4 and Sox2 function to drive the immunomodulatory transcriptome of GSCs and contribute to the immunosuppressive microenvironment in GBM.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Tolerância Imunológica , Fator 3 de Transcrição de Octâmero/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma/imunologia , Animais , Apoptose/genética , Neoplasias Encefálicas , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Proteínas de Ciclo Celular/genética , Movimento Celular/genética , Feminino , Glioblastoma , Humanos , Células Jurkat , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neoplásicas , Fator 3 de Transcrição de Octâmero/genética , Fatores de Transcrição SOXB1/genética , Células THP-1 , Fatores de Transcrição/genética , Transfecção , Transgenes , Carga Tumoral/genética , Microambiente Tumoral/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Genes Genomics ; 42(9): 1067-1074, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32725577

RESUMO

BACKGROUND: Duchenne muscular dystrophy (DMD) is a fatal X-linked recessive disorder with no effective treatment, which underscores the importance of avoiding the birth of children with DMD by identifying pathogenic mutations and obtaining an accurate prenatal diagnosis. OBJECTIVE: The objective of this study was to analyze the genetic defect of a Chinese family where all male patients have died of DMD. METHODS: Multiplex ligation dependent probe analysis (MLPA) and next-generation sequencing (NGS) were employed to detect DMD mutations. The candidate mutations were then validated by Sanger sequencing. In vitro splicing assay was further conducted to examine the potential effect of the novel DMD splice site mutation on splicing. RESULTS: We found that two rare DMD mutations c.1318G>A and c.6438+2T>G passed from generation to generation among female carriers and they may be used as genetic markers in the Chinese DMD family. In vitro splicing assay further revealed that the novel classical splice site mutation c.6438+2T>G gave rise to a new donor splice site, which resulted in a frame shift of the transcripts and a premature termination at position 2159 in exon 45 (p.Y2144Nfs*16). CONCLUSION: We found that two co-inherited mutations passed from generation to generation in female carriers and they may be used as genetic markers in the Chinese DMD family. Our findings not only expanded the DMD mutation spectrum, but also provided an important basis for identifying of female carriers and avoiding the birth of affected male children in this DMD family.


Assuntos
Distrofina/genética , Distrofia Muscular de Duchenne/genética , Adulto , Idoso , Povo Asiático/genética , China , Distrofina/metabolismo , Éxons/genética , Família , Feminino , Marcadores Genéticos/genética , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Distrofia Muscular de Duchenne/metabolismo , Mutação/genética , Linhagem
6.
Biochem Biophys Res Commun ; 516(3): 819-824, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31262447

RESUMO

PIWIL2 belongs to the PIWI protein subfamily and is widely expressed in a variety of tumors. Previous studies have shown that PIWIL2 has the characteristics of oncogene. Recently we reported that PIWIL2 suppresses GSK3ß activity to regulate circadian rhythms through SRC-PI3K-AKT pathway. As GSK3ß is a key part of the ß-catenin destruction complex, it plays a vital role in regulating the degradation of ß-catenin. Besides, the activated ß-catenin/CyclinD1 pathway is involved in the proliferation of tumor cells. It is intriguing to investigate whether PIWIL2 regulates ß-catenin and downstream pathway. In this study, we found that PIWIL2 suppressed GSK3ß induced phosphorylation and ubiquitination of ß-catenin, and thus increased ß-catenin accumulation in the nucleus. By up-regulating ß-catenin and CyclinD1, PIWIL2 can promote cell cycle and proliferation in tumor cells. Taken together, our results revealed a novel function of PIWIL2 in regulating ß-catenin/CyclinD1 pathway in tumor cells, providing a new perspective for PIWIL2 as an oncogene.


Assuntos
Proteínas Argonautas/genética , Ciclo Celular/genética , Ciclina D1/genética , Regulação Neoplásica da Expressão Gênica , Processamento de Proteína Pós-Traducional , beta Catenina/genética , Proteínas Argonautas/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proliferação de Células , Ciclina D1/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Células HeLa , Células Hep G2 , Humanos , Fosforilação , Estabilidade Proteica , Transdução de Sinais , Ubiquitinação , beta Catenina/metabolismo
7.
Cell Death Dis ; 10(2): 62, 2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30683868

RESUMO

Circadian rhythm is an autoregulatory rhythm, which is sustained by various mechanisms. The nucleocytoplasmic shuttling of BMAL1 is essential for CLOCK translocation between cytoplasm and nucleus and maintenance of the correct pace of the circadian clock. Here we showed that RAE1 and NUP98 can promote the degradation of BMAL1 and CLOCK. Knockdown of RAE1 and NUP98 suppressed BMAL1 shuttling, leading to cytoplasm accumulation of CLOCK. Furthermore, Chip assay showed that knockdown of RAE1 and NUP98 can enhance the interaction between CLOCK: BMAL1 and E-box region in the promoters of Per2 and Cry1 while reducing its transcription activation activity. Our present study firstly revealed that RAE1 and NUP98 are critical regulators for BMAL1 shuttling.


Assuntos
Fatores de Transcrição ARNTL/metabolismo , Proteínas CLOCK/metabolismo , Proteínas Associadas à Matriz Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Multimerização Proteica , Proteólise , Animais , Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Camundongos , Células NIH 3T3 , Proteínas Associadas à Matriz Nuclear/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Proteínas de Transporte Nucleocitoplasmático/genética , Plasmídeos/genética , Ativação Transcricional/genética , Transfecção , Ubiquitinação/genética
8.
Exp Mol Med ; 50(10): 1-15, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30287810

RESUMO

Circadian genes control most of the physiological functions in cancer cells, including cell proliferation, migration, and invasion. The CLOCK and BMAL1 complex plays a central role in circadian rhythms. Previous studies have shown that circadian genes may act as oncogenes or tumor-suppressor genes. In addition, F-actin, regulated by RHOA, has been shown to participate in tumor progression. However, the roles of the CLOCK and BMAL1 genes in the regulation of tumor progression via the RHOA-ROCK-CFL pathway remain largely unclear. Here we first indicate that the rearrangement of F-actin is regulated by CLOCK and BMAL1. We found that CLOCK and BMAL1 can upregulate RHOA expression by inhibiting CUL3-mediated ubiquitination and activate RHOA by reducing the interaction between RHOA and RhoGDI. Consequently, CLOCK and BMAL1 control the expression of the components of the RHOA-ROCK-CFL pathway, which alters the dynamics of F-actin/G-actin turnover and promotes cancer cell proliferation, migration, and invasion. In conclusion, our research proposes a novel insight into the role of CLOCK and BMAL1 in tumor cells.


Assuntos
Fatores de Transcrição ARNTL/metabolismo , Actinas/metabolismo , Proteínas CLOCK/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Linhagem Celular Tumoral , Proteínas Culina/metabolismo , Humanos , Modelos Biológicos , Estabilidade Proteica , Ubiquitinação
9.
J Nanobiotechnology ; 14(1): 72, 2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-27769275

RESUMO

BACKGROUND: In infected periapical tissues, Enterococcus faecalis is one of the most common dominant bacteria. Chlorhexidine has been proved to show strong antibacterial ability against E. faecalis but is ineffective in promoting mineralization for tissues around root apex. Mesoporous calcium-silicate nanoparticles are newly synthesized biomaterials with excellent ability to promote mineralization and carry-release bioactive molecules in a controlled manner. In this study, mesoporous calcium-silicate nanoparticles were functionalized with chlorhexidine and their releasing profile, antibacterial ability, effect on cell proliferation and in vitro mineralization property were evaluated. RESULTS: The chlorhexidine was successfully incorporated into mesoporous calcium-silicate nanoparticles by a mixing-coupling method. The new material could release chlorhexidine as well as Ca2+ and SiO32- in a sustained manner with an alkaline pH value under different conditions. The antimicrobial ability against planktonic E. faecalis was dramatically improved after chlorhexidine incorporation. The nanoparticles with chlorhexidine showed no negative effect on cell proliferation with low concentrations. On dentin slices, the new synthesized material demonstrated a similar inhibitory effect on E. faecalis as the chlorhexidine. After being immersed in SBF for 9 days, numerous apatite crystals could be observed on surfaces of the material tablets. CONCLUSIONS: Mesoporous calcium-silicate nanoparticles loaded with chlorhexidine exhibited release of ions and chlorhexidine, low cytotoxicity, excellent antibacterial ability and in vitro mineralization. This material could be developed into a new effective intra-canal medication in dentistry or a new bone defect filling material for infected bone defects.


Assuntos
Compostos de Cálcio/química , Clorexidina/farmacologia , Nanopartículas/química , Silicatos/química , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Compostos de Cálcio/toxicidade , Linhagem Celular Tumoral , Clorexidina/química , Clorexidina/toxicidade , Enterococcus faecalis/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Nanopartículas/toxicidade , Porosidade , Silicatos/toxicidade
10.
Gene ; 585(1): 110-118, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26968892

RESUMO

Human papillomavirus (HPV) is the major causative agent of cervical cancer, which accounts for the second highest cancer burden in women worldwide. HPV-52, the prevalent subtype in Asia, especially in southwest China, was analyzed in this study. To analyze polymorphisms, intratypic variants, and genetic variability in the E6-E7 (n=26) and L1 (n=53) genes of HPV-52, these genes were sequenced and the sequences were submitted to GenBank. Phylogenetic trees were constructed using the neighbor-joining and Kimura 2-parameters methods, followed by analysis of the diversity of secondary structure. Finally, we estimated the selection pressures acting on the E6-E7 and L1 genes. Fifty-one novel variants of HPV-52 L1, and two novel variants of HPV-52 E6-E7 were identified in this study. Thirty single nucleotide changes were observed in HPV-52 E6-E7 sequences with 19/30 non-synonymous mutations and 11/30 synonymous mutations (five in the alpha helix and five in the beta sheet). Fifty-five single nucleotide changes were observed in HPV-52 L1 sequences with 17/55 non-synonymous mutations (seven in the alpha helix and fourteen in the beta sheet) and 38/55 synonymous mutations. Selective pressure analysis predicted that most of these mutations reflect positive selection. Identifying new variants in HPV-52 may inform the rational design of new vaccines specifically for women in southwest China. Knowledge of genetic variation in HPV may be useful as an epidemiologic correlate of cervical cancer risk, or may even provide critical information for developing diagnostic probes.


Assuntos
Alphapapillomavirus/genética , Proteínas Oncogênicas Virais/genética , Polimorfismo de Nucleotídeo Único/genética , Sequência de Aminoácidos , Sequência de Bases , China , DNA Viral/genética , Feminino , Humanos , Dados de Sequência Molecular , Análise de Sequência de DNA , Neoplasias do Colo do Útero/virologia
11.
J Mater Sci Mater Med ; 27(1): 16, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26676862

RESUMO

The main purpose of this study was to investigate the substantivity of Ag-Ca-Si mesoporous nanoparticles (Ag-MCSNs) on dentin and its residual antibacterial effects against Enterococcus faecalis. Ag-MCSNs were fabricated and characterized, ion release profile and pH were tested, and the ability to inhibit planktonic E. faecalis as well as the cytotoxicity was evaluated. Dentin slices were medicated with Ca(OH)2 paste, 2 % chlorhexidine gel and Ag-MCSNs paste for 7 days and then irrigated. Dentin slices were then immersed in E. faecalis suspension for 6 days and then transferred to fresh brain heart infusion solution. The optical density value within 10 h after immersing and transferring were measured and compared among groups. Results indicated that Ag-MCSNs showed high pH, sustained Ag(+)-Ca(2+)-SiO3 (2-) ion release, and high substantivity on dentin. The Ag-MCSNs exhibited strong antibacterial effects against planktonic E. faecalis and much better residual inhibition effects against E. faecalis growth on dentin than Ca(OH)2 paste (P < 0.05). The Ag-MCSNs showed excellent antibacterial ability against E. faecalis and high substantivity on dentin, which might be developed to a new effective intra-canal medicament for human teeth.


Assuntos
Cálcio/química , Dentina/microbiologia , Enterococcus faecalis/efeitos dos fármacos , Nanopartículas , Silício/química , Prata/química , Células 3T3 , Animais , Enterococcus faecalis/crescimento & desenvolvimento , Camundongos , Microscopia Eletrônica de Varredura , Porosidade
12.
Dent Mater J ; 34(1): 54-60, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25748459

RESUMO

Ag-loaded mesoporous bioactive glass (Ag-MBG) powders were synthesized and characterized. The ions release of Ag-MBGs in Tris-HCl and the pH stability of simulated body fluids after immersing Ag-MBGs were tested. Root canals were inoculated with Enterococcus faecalis for 4 weeks, and the antibacterial activity of MBGs, Ag-MBGs and calcium hydroxide against E. faecalis biofilm were evaluated. Results showed that Ag-MBGs possessed highly ordered mesoporous structure with silver nanoparticles deposited in the mesopores, which enabled a sustained Ag ions released. The biofilms treated with Ag-MBGs showed a significant structural disruption compared with MBGs. These results indicated that Ag-MBGs possess a potent antibacterial effect against E.faecalis biofilm in root canal, and the antibacterial activity was induced by the release of Ag ions from Ag-MBGs.


Assuntos
Antibacterianos/química , Biofilmes/efeitos dos fármacos , Cavidade Pulpar/microbiologia , Enterococcus faecalis/efeitos dos fármacos , Vidro/química , Prata/química , Antibacterianos/síntese química , Humanos , Concentração de Íons de Hidrogênio , Porosidade
13.
Int J Nanomedicine ; 9: 5217-30, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25419127

RESUMO

Mesoporous calcium-silicate nanoparticles (MCSNs) are advanced biomaterials for controlled drug delivery and mineralization induction. Nanosilver-incorporated MCSNs (Ag-MCSNs) were prepared in the present study using both the adsorption and template methods. Both versions of Ag-MCSNs showed characteristic morphology of mesoporous materials and exhibited sustained release of ions over time. In antibacterial testing against planktonic Enterococcus faecalis, Ag-MCSNs showed significantly better antibacterial effects when compared with MCSNs (P<0.05). The Ag-MCSNs aggregated on the dentin surface of root canal walls and infiltrated into dentinal tubules after ultrasound activation, significantly inhibiting the adherence and colonization of E. faecalis on dentin (P<0.05). Despite this, Ag-MCSNs with templated nanosilver showed much lower cytotoxicity than Ag-MCSNs with adsorbed nanosilver (P<0.05). The results of the present study indicated that nanosilver could be incorporated into MCSNs using the template method. The templated nanosilver could release silver ions and inhibit the growth and colonization of E. faecalis both in the planktonic form and as biofilms on dentin surfaces as absorbed nanosilver. Templated Ag-MCSNs may be developed into a new intracanal disinfectant for root canal disinfection due to their antibacterial ability and low cytotoxicity, and as controlled release devices for other bioactive molecules to produce multifunctional biomaterials.


Assuntos
Antibacterianos/farmacologia , Cálcio/química , Dentina/microbiologia , Nanopartículas Metálicas/química , Silicatos/química , Prata/farmacologia , Antibacterianos/química , Aderência Bacteriana/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cavidade Pulpar/citologia , Cavidade Pulpar/efeitos dos fármacos , Cavidade Pulpar/microbiologia , Dentina/efeitos dos fármacos , Enterococcus faecalis/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Dente Molar/efeitos dos fármacos , Porosidade , Prata/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...