Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2310037, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37931925

RESUMO

Metalloporphyrins and metallophthalocyanines emerge as popular building blocks to develop covalent organic nanosheets (CONs) for CO2 reduction reaction (CO2 RR). However, existing CONs predominantly yield CO, posing a challenge in achieving efficient methanol production through multielectron reduction. Here, ultrathin, cationic, and cobalt-phthalocyanine-based CONs (iminium-CONs) are reported for electrochemical CO2 -to-CH3 OH conversion. The integration of quaternary iminium groups enables the formation of ultrathin morphology with uniformly anchored cobalt active sites, which are pivotal for facilitating rapid multielectron transfer. Moreover, the cationic iminium-CONs exhibit a lower activity for hydrogen evolution side reaction. Consequently, iminium-CONs manifest significantly enhanced selectivity for methanol production, as evidenced by a remarkable 711% and 270% improvement in methanol partial current density (jCH3OH ) compared to pristine CoTAPc and neutral imine-CONs, respectively. Under optimized conditions, iminium-CONs deliver a high jCH3OH of 91.7 mA cm-2 at -0.78 V in a flow cell. Further, iminium-CONs achieve a global methanol Faradaic efficiency (FECH3OH ) of 54% in a tandem device. Thanks to the single-site feature, the methanol is produced without the concurrent generation of other liquid byproducts. This work underscores the potential of cationic covalent organic nanosheets as a compelling platform for electrochemical six-electron reduction of CO2 to methanol.

2.
Chem Commun (Camb) ; 59(92): 13679-13689, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37901914

RESUMO

The potency of heteroatom-doping in reshaping optoelectronic properties arises from the distinct electronegativity variations between heteroatoms and carbon atoms. By incorporating two heteroatoms with differing electronegativities (e.g., B = N), not only is the architectural coherence of π-conjugated systems retained, but also dipolar traits are introduced, accompanied by unique intermolecular interactions absent in their all-carbon analogs. Another burgeoning doping strategy, featuring the heteroatom-boron-heteroatom motif (X-B-X, where X = N, O), has captured growing attention. This configuration's coexistence of the boron-heteroatom unit and an isolated heteroatom stimulates mutual modulation in the dipole of the boron-heteroatom unit and the heteroatom's electronegativity. In this Feature article, we present an encompassing survey of XBX-doped π-conjugated systems, elucidating how the integration of the X-B-X unit induces transformative structural and property changes within π-conjugated systems.

3.
Angew Chem Int Ed Engl ; 62(29): e202304711, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37199041

RESUMO

The incorporation of heteroatoms and/or heptagons as the defects into helicenes expands the variety of chiroptical materials with novel properties. However, it is still challenging to construct novel boron-doped heptagon-containing helicenes with high photoluminescence quantum yields (PLQYs) and narrow full-width-at-half-maximum (FWHM) values. We report an efficient and scalable synthesis of a quadruple helicene 4Cz-NBN with two nitrogen-boron-nitrogen (NBN) units and a double helicene 4Cz-NBN-P1 bearing two NBN-doped heptagons, the latter could be formed via a two-fold Scholl reaction of the former. The helicenes 4Cz-NBN and 4Cz-NBN-P1 exhibit excellent PLQYs up to 99 % and 65 % with narrow FWHM of 24 nm and 22 nm, respectively. The emission wavelengths are tunable via stepwise titration experiments of 4Cz-NBN-P1 toward fluoride, enabling distinguished circularly polarized luminescence (CPL) from green, orange (4Cz-NBN-P1-F1) to yellow (trans/cis-4Cz-NBN-P1-F2) with near-unity PLQYs and broader circular dichroism (CD) ranges. The five structures of the aforementioned four helicenes were confirmed by single crystal X-ray diffraction analysis. This work provides a novel design strategy for construction of non-benzenoid multiple helicenes exhibiting narrow emissions with superior PLQYs.

4.
Adv Mater ; 35(24): e2211856, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36799267

RESUMO

Ammonia is an indispensable commodity in the agricultural and pharmaceutical industries. Direct nitrate-to-ammonia electroreduction is a decentralized route yet challenged by competing side reactions. Most catalysts are metal-based, and metal-free catalysts with high nitrate-to-ammonia conversion activity are rarely reported. Herein, it is shown that amorphous graphene synthesized by laser induction and comprising strained and disordered pentagons, hexagons, and heptagons can electrocatalyze the eight-electron reduction of NO3 - to NH3 with a Faradaic efficiency of ≈100% and an ammonia production rate of 2859 µg cm-2 h-1 at -0.93 V versus reversible hydrogen electrode. X-ray pair-distribution function analysis and electron microscopy reveal the unique molecular features of amorphous graphene that facilitate NO3 - reduction. In situ Fourier transform infrared spectroscopy and theoretical calculations establish the critical role of these features in stabilizing the reaction intermediates via structural relaxation. The enhanced catalytic activity enables the implementation of flow electrolysis for the on-demand synthesis and release of ammonia with >70% selectivity, resulting in significantly increased yields and survival rates when applied to plant cultivation. The results of this study show significant promise for remediating nitrate-polluted water and completing the NOx cycle.

5.
J Phys Chem Lett ; 13(43): 10085-10091, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36269151

RESUMO

Modification of π-conjugated systems using a boron atom as the dopant has become a powerful approach to create new structures and new properties. Herein, we report a facile synthesis of replacing the carbon edges of [4]triangulene by three oxygen-boron-oxygen (OBO) units. The OBO-modified [4]triangulenes are structurally similar to [4]triangulene and isoelectronic to the trianion of [4]triangulene. The structure of OBO-modified [4]triangulene is confirmed by single-crystal X-ray diffraction analysis, revealing an off-plane core with three edge-modified OBO units. These OBO-modified [4]triangulenes exhibit excellent thermal stability. These compounds have phosphorescence with lifetime longer than 1 s at 77 K. Both theoretical calculations and photophysical investigation of OBO-modified [4]triangulenes indicate that this kind of molecules display a rare anti-Kasha fluorescence and phosphorescence emissions from multiple higher excited states.

6.
Chem Sci ; 13(19): 5597-5605, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35694347

RESUMO

Boron-doped polycyclic aromatic hydrocarbons (PAHs) have attracted ongoing attention in the field of optoelectronic materials due to their unique optical and redox properties. To investigate the effect of tetracoordinate boron in PAHs bearing N-heterocycles (indole and carbazole), a facile approach to four-coordinate boron-doped PAHs was developed, which does not require elevated temperature and pre-synthesized functionalized boron reactants. Five tetracoordinate boron-doped PAHs (NBNN-1-NBNN-5) were synthesized with different functional groups. Two of them (NBNN-1 and NBNN-2) could further undergo oxidative coupling reactions to form fused off-plane tetracoordinate boron-doped PAHs NBNN-1f and NBNN-2f. The investigation of photophysical properties showed that the UV/vis absorption and fluorescence emission are significantly red-shifted compared to those of the three-coordinate boron-doped counterparts. In addition, the emission of NBNN-1-NBNN-3 consisted of prompt fluorescence and delayed fluorescence. The compounds NBNN-1f and NBNN-2f showed aggregation-induced emission.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...