Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(22)2023 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-38005522

RESUMO

Three-dimensional laser scanning has emerged as a prevalent measurement method in numerous high-precision applications, and the precision of the obtained data is closely related to the intensity information. Comprehending the association between intensity and point cloud accuracy facilitates scanner performance assessment, optimization of data acquisition strategies, and evaluation of point cloud precision, thereby ensuring data reliability for high-precision applications. In this study, we investigated the correlation between point cloud accuracy and two distinct types of intensity information. In addition, we presented methods for assessing point cloud accuracy using these two forms of intensity information, along with their applicable scopes. By examining the percentage intensity, we analyzed the reflectance properties of the scanned object's surface employing the Lambertian model. Our findings indicate that the Lambertian circle fitting radius is inversely correlated with the scanner's ranging error at a constant scanning distance. Experimental outcomes substantiate that modifying the surface characteristics of the object enables the attainment of higher-precision point cloud data. By constructing a model associating the raw reflectance intensity with ranging errors, we developed a single-point error ellipsoid model to assess the accuracy of individual points within the point cloud. The experiments revealed that the ranging error model based on the raw intensity is solely applicable to point cloud data unaffected by specular reflectance properties. Moreover, the devised single-point error ellipsoid model accurately evaluates the measurement error of individual points. Both analytical methods can be utilized to evaluate the performance of the scanner as well as the accuracy of the acquired point cloud data, providing reliable data support for various high-precision applications.

2.
Sensors (Basel) ; 22(15)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35957272

RESUMO

In view of the existence of remote sensing images with large variations in spatial resolution, small and dense objects, and the inability to determine the direction of motion, all these components make object detection from remote sensing images very challenging. In this paper, we propose a single-stage detection network based on YOLOv5. This method introduces the MS Transformer module at the end of the feature extraction network of the original network to enhance the feature extraction capability of the network model and integrates the Convolutional Block Attention Model (CBAM) to find the attention area in dense scenes. In addition, the YOLOv5 target detection network is improved by incorporating a rotation angle approach from the a priori frame design and the bounding box regression formulation to make it suitable for rotating frame-based detection scenarios. Finally, the weighted combination of the two difficult sample mining methods is used to improve the focal loss function, so as to improve the detection accuracy. The average accuracy of the test results of the improved algorithm on the DOTA data set is 77.01%, which is higher than the previous detection algorithm. Compared with the average detection accuracy of YOLOv5, the average detection accuracy is improved by 8.83%. The experimental results show that the algorithm has higher detection accuracy than other algorithms in remote sensing scenes.


Assuntos
Algoritmos , Tecnologia de Sensoriamento Remoto , Atenção , Coleta de Dados , Tecnologia de Sensoriamento Remoto/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...