Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Microbiol ; 23(1): 100, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-37055727

RESUMO

Mosquitoes of many species are key disease vectors, killing millions of people each year. Bacillus thuringiensis-based insecticide formulations are largely recognized as among the most effective, ecologically safe, and long-lasting methods of managing insect pests. New B. thuringiensis strains with high mosquito control effectiveness were isolated, identified, genetically defined, and physiologically characterized. Eight B. thuringiensis strains were identified and shown to carry endotoxin-producing genes. Using a scanning electron microscope, results revealed typical crystal forms of various shapes in B. thuringiensis strains. Fourteen cry and cyt genes were found in the strains examined. Although the genome of the B. thuringiensis A4 strain had twelve cry and cyt genes, not all of them were expressed, and only a few protein profiles were observed. The larvicidal activity of the eight B. thuringiensis strains was found to be positive (LC50: 1.4-28.5 g/ml and LC95: 15.3-130.3 g/ml). Bioassays in a laboratory environment demonstrated that preparations containing B. thuringiensis spores and crystals were particularly active to mosquito larvae and adults. These new findings show that the novel preparation containing B. thuringiensis A4 spores and crystals mixture might be used to control larval and adult mosquitoes in a sustainable and ecologically friendly manner.


Assuntos
Bacillus thuringiensis , Culex , Inseticidas , Humanos , Animais , Inseticidas/farmacologia , Inseticidas/metabolismo , Bacillus thuringiensis/genética , Culex/metabolismo , Larva/metabolismo , Toxinas de Bacillus thuringiensis/metabolismo , Mosquitos Vetores , Endotoxinas/genética , Endotoxinas/farmacologia , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/farmacologia , Proteínas Hemolisinas/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Proteínas de Bactérias/química
2.
Environ Sci Pollut Res Int ; 30(11): 31218-31230, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36443550

RESUMO

The stability classification of loess deposits around tunnels is a vital prerequisite for safe construction in underground environment. Due to the fuzziness and randomness of loess physical and mechanical parameters, the stability prediction of loess deposits shows uncertainty. Existing loess deposit stability classification models rarely consider the uncertainty of influencing factors. A novel classification probability model of loess deposits is proposed for the above problems based on Monte Carlo simulation and multi-dimensional normal cloud (MCS-Cloud). Specifically, five loess parameters, including water content, cohesion, internal friction angle, elastic modulus, and Poisson ratio, were selected as predictors for the stability level of loess deposits. The weights of the predictors were obtained through 50 test samples. After acquiring the numerical characteristics of the normal cloud, the stability level can be comprehensively evaluated with the weighted multi-dimensional normal cloud model. The classification model was applied to the loess tunnel in Yan'an, China. The prediction results are in good agreement with practical engineering, denoting the rationality of the weighted multi-dimensional normal cloud. Finally, the stability classification of loess deposits was discussed from the perspective of uncertainty analysis with the application of MCS. Results proved that the MCS-Cloud model is feasible for classifying the stability of loess deposits surrounding tunnels. The obtained classification probability can be used for quantitative risk assessment of loess tunnels.


Assuntos
Simulação por Computador , Incerteza , China , Método de Monte Carlo , Medição de Risco
3.
Nanomaterials (Basel) ; 12(19)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36234567

RESUMO

In this work, an olive oil-filled composite capsule (C-O/W) adsorbent was prepared for the adsorption of 3,4,5-trichlorophenol (3,4,5-TCP) by the emulsion templating method. Using methylene diisocyanate (HDI) and 1,6-hexanediamine (HMDA) as functional monomers, olive oil was encapsulated in a shell layer composed of graphene oxide and a polymer by interfacial imine polymerization. The contaminant target was efficiently removed by the hydrophobic interaction between olive oil and chlorophenols. The removal of 3,4,5-TCP was remarkable, with an encapsulation rate of 85%. The unique microcapsule structure further enhanced the kinetic performance, which reached 92% of the maximum value within 40 min. The adsorption of different chlorophenols was investigated using 2-chlorophenol (2-CP), 2,6-dichlorophenol (2,6-DCP), and 3,4,5-TCP. The adsorption of 3,4,5-TCP by the C-O/W microcapsules was found to be much higher than that of other chlorophenols. When analyzing a real sample, the content of 3,4,5-TCP was significantly reduced after adsorption by the C-O/W microcapsules, demonstrating that the C-O/W microcapsules were also capable of removing 3,4,5-TCP from a complex environment. This simple and inexpensive preparation strategy provides a new method for the synthesis of functionalized C-O/W microcapsule adsorbents and an effective adsorbent of 3,4,5-TCP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...