Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(23): 230601, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38905646

RESUMO

Fast and high-fidelity qubit initialization is crucial for low-frequency qubits such as fluxonium, and in applications of many quantum algorithms and quantum error correction codes. In a circuit quantum electrodynamics system, the initialization is typically achieved by transferring the state between the qubit and a short-lived cavity through microwave driving, also known as the sideband cooling process in atomic system. Constrained by the selection rules from the parity symmetry of the wave functions, the sideband transitions are only enabled by multiphoton processes which require multitone or strong driving. Leveraging the flux tunability of fluxonium, we circumvent this limitation by breaking flux symmetry to enable an interaction between a noncomputational qubit transition and the cavity excitation. With single-tone sideband driving, we realize qubit initialization with a fidelity exceeding 99% within a duration of 300 ns, robust against the variation of control parameters. Furthermore, we show that our initialization scheme has a built-in benefit in simultaneously removing the second-excited state population of the qubit, and can be easily incorporated into a large-scale fluxonium processor.

2.
Phys Rev Lett ; 132(6): 060602, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38394561

RESUMO

The fluxonium qubits have emerged as a promising platform for gate-based quantum information processing. However, their extraordinary protection against charge fluctuations comes at a cost: when coupled capacitively, the qubit-qubit interactions are restricted to XX interactions. Consequently, effective ZZ or XZ interactions are only constructed either by temporarily populating higher-energy states, or by exploiting perturbative effects under microwave driving. Instead, we propose and demonstrate an inductive coupling scheme, which offers a wide selection of native qubit-qubit interactions for fluxonium. In particular, we leverage a built-in, flux-controlled ZZ interaction to perform qubit entanglement. To combat the increased flux-noise-induced dephasing away from the flux-insensitive position, we use a continuous version of the dynamical decoupling scheme to perform noise filtering. Combining these, we demonstrate a 20 ns controlled-z gate with a mean fidelity of 99.53%. More than confirming the efficacy of our gate scheme, this high-fidelity result also reveals a promising but rarely explored parameter space uniquely suitable for gate operations between fluxonium qubits.

3.
Nucleic Acids Res ; 52(D1): D1053-D1061, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37953328

RESUMO

Recent technological developments in spatial transcriptomics allow researchers to measure gene expression of cells and their spatial locations at the single-cell level, generating detailed biological insight into biological processes. A comprehensive database could facilitate the sharing of spatial transcriptomic data and streamline the data acquisition process for researchers. Here, we present the Spatial TranscriptOmics DataBase (STOmicsDB), a database that serves as a one-stop hub for spatial transcriptomics. STOmicsDB integrates 218 manually curated datasets representing 17 species. We annotated cell types, identified spatial regions and genes, and performed cell-cell interaction analysis for these datasets. STOmicsDB features a user-friendly interface for the rapid visualization of millions of cells. To further facilitate the reusability and interoperability of spatial transcriptomic data, we developed standards for spatial transcriptomic data archiving and constructed a spatial transcriptomic data archiving system. Additionally, we offer a distinctive capability of customizing dedicated sub-databases in STOmicsDB for researchers, assisting them in visualizing their spatial transcriptomic analyses. We believe that STOmicsDB could contribute to research insights in the spatial transcriptomics field, including data archiving, sharing, visualization and analysis. STOmicsDB is freely accessible at https://db.cngb.org/stomics/.


Assuntos
Bases de Dados Genéticas , Perfilação da Expressão Gênica , Transcriptoma , Disseminação de Informação
4.
Phys Rev Lett ; 129(1): 010502, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35841558

RESUMO

Superconducting qubits provide a promising path toward building large-scale quantum computers. The simple and robust transmon qubit has been the leading platform, achieving multiple milestones. However, fault-tolerant quantum computing calls for qubit operations at error rates significantly lower than those exhibited in the state of the art. Consequently, alternative superconducting qubits with better error protection have attracted increasing interest. Among them, fluxonium is a particularly promising candidate, featuring large anharmonicity and long coherence times. Here, we engineer a fluxonium-based quantum processor that integrates high qubit coherence, fast frequency tunability, and individual-qubit addressability for reset, readout, and gates. With simple and fast gate schemes, we achieve an average single-qubit gate fidelity of 99.97% and a two-qubit gate fidelity of up to 99.72%. This performance is comparable to the highest values reported in the literature of superconducting circuits. Thus our work, within the realm of superconducting qubits, reveals an alternative qubit platform that is competitive with the transmon system.

5.
Phys Rev Lett ; 126(9): 090503, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33750151

RESUMO

Superconducting qubits are a leading platform for scalable quantum computing and quantum error correction. One feature of this platform is the ability to perform projective measurements orders of magnitude more quickly than qubit decoherence times. Such measurements are enabled by the use of quantum-limited parametric amplifiers in conjunction with ferrite circulators-magnetic devices which provide isolation from noise and decoherence due to amplifier backaction. Because these nonreciprocal elements have limited performance and are not easily integrated on chip, it has been a long-standing goal to replace them with a scalable alternative. Here, we demonstrate a solution to this problem by using a superconducting switch to control the coupling between a qubit and amplifier. Doing so, we measure a transmon qubit using a single, chip-scale device to provide both parametric amplification and isolation from the bulk of amplifier backaction. This measurement is also fast, high fidelity, and has 70% efficiency, comparable to the best that has been reported in any superconducting qubit measurement. As such, this work constitutes a high-quality platform for the scalable measurement of superconducting qubits.

6.
Int Microbiol ; 21(3): 143-152, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30810954

RESUMO

A new glutamate-dependent γ-polyglutamic acid (γ-PGA) producer Z3 isolated from soil samples in Daxinganling forest region of China was identified, and its optimal medium components were investigated using response surface methodology. Strain Z3 was identified as Bacillus velezensis by physiology and biochemistry and 16S rDNA sequence analysis. This is the first report of glutamate-dependent B. velezensis with the ability to synthesize γ-PGA. Then, the optimum γ-PGA yield (5.58 g/L) was achieved with glutamate 86 g/L, glucose 36 g/L, yeast extract powder 5.5 g/L, and NaH2PO4 7.5 g/L. Furthermore, activities of enzymes participating in glutamate synthesis were assessed, and the results showed that lower ketoglutaric dehydrogenase activity (KGDH) and higher glutamate dehydrogenase activity (GDH) resulted in higher γ-PGA yield. Identification of glutamate-dependent γ-PGA producer named B. velezensis Z3 enriches microbiological resources with γ-PGA-producing capacity. B. velezensis optimization of nutrients and analysis of enzymes activities will not only help to increase γ-PGA productivity but also to understand the γ-PGA synthesis mechanism in B. velezensis Z3.


Assuntos
Bacillus/crescimento & desenvolvimento , Bacillus/metabolismo , Meios de Cultura/química , Ácido Poliglutâmico/metabolismo , Bacillus/genética , Bacillus/isolamento & purificação , Técnicas de Tipagem Bacteriana , China , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Florestas , Glutamato Desidrogenase/análise , Complexo Cetoglutarato Desidrogenase/análise , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...