Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(3): e13739, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36925536

RESUMO

Context: Chronic inflammation is usually caused by persistent irritation or uncontrolled infection and is characterized by ongoing tissue damage, injury-induced cellular proliferation and tissue repair. Colitis-associated colorectal cancer (CAC) isone of the classic examples of tumors that are tightly related to chronic inflammation. Background: To investigated the key pharmacodynamic genes of HQT interventions in CAC by using transcriptome predictions and experiments.Materials & Methods: We used the azoxymethane/dextran sodium sulfate method to induce the mice CAC model. After preventive administration of HQT to the mice model, colonic tissues were taken for transcriptome sequencing and the transcriptome results were then experimentally validated using quantitative Real-Time PCR technique. Results: Transcriptome sequencing revealed that the effect of the mechanism of HQT on the CAC mice model maybe related to its inhibition of accelerated epithelial mesenchymal transition and induction of pyroptosis. The levels of Matrix-metalloproteinases such as MMP-2, MMP-9 were significantly reduced in CAC mice treated with HQT; The mRNA expression for Krt17, App, CD44 and WNT pathway related sites such as Lrrc15, Cldn-1, Mpc1, Agr2 which are related factors affecting the epithelial mesenchymal transition were significantly reduced in CAC mice treated with HQT; the aberrant mRNA expression of inflammasome components that drive pyroptosis, including Nlrp3, Caspase-1, ASC, GSDMD and its mediated product IL-18 have been improved. Conclusions: Our findings provide preliminary clarification that inhibiting the progression of CAC by using HQT is effective, the mechanism of action may be relatedto the inhibition of epithelial mesenchymal transition and induction of pyroptosis during tumorigenesis.

2.
Front Pharmacol ; 13: 837217, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35462890

RESUMO

Background: Although the exact molecular mechanisms of colitis-associated colorectal cancer are not fully understood, the chronic inflammation was positively correlated with tumorigenesis. The traditional Chinese medicine botanical formulation Huangqin Tang has significant anti-inflammatory effects. We investigated whether HQT can ameliorate the progression of inflammation to cancer through its anti-inflammatory effects by using relevant predictions and experiments. Methods: We used the azoxymethane/dextran sodium sulfate method to induce the mice colitis-associated colorectal cancer model. After preventive administration of Huangqin Tang to the mice model, colonic tissues were taken for quantitative proteomic analysis of tandem mass tags, and the proteomic results were then experimentally validated using the molecular biology approach. Results: Proteomic screening revealed that the effect of the mechanism of Huangqin-Tang on the colitis-associated colorectal cancer mice model may be related to infinite replication which demonstrated abnormal G1/S checkpoint and epithelial mesenchymal transition acceleration. The levels of inflammatory factors such as interleukin-1α, interleukin-1ß, interleukin-6, and tumor necrosis factor-α were significantly reduced in colitis-associated colorectal cancer mice treated with Huangqin Tang; the aberrant expression of G1/S checkpoint-associated sites of cell cycle protein-dependent kinase 4, D1-type cyclins, and dysregulation of related sites of the WNT pathway which are most related to the acceleration of the epithelial mesenchymal transition process including WNT3A, ß-catenin, E-cadherin, and glycogen synthase kinase 3ß has been improved. Conclusion: Reducing inflammation and thus inhibiting the progression of colitis-associated colorectal cancer by using Huangqin-Tang is effective, and the mechanism of action may be related to the inhibition of uncontrolled proliferation during tumorigenesis. In the follow-up, we will conduct a more in-depth study on the relevant mechanism of action.

3.
Artigo em Inglês | MEDLINE | ID: mdl-32382278

RESUMO

As a classic prescription, Huangqin Tang (HQT) has been widely applied to treat ulcerative colitis (UC), although its pharmacological mechanisms are not clear. In this study, urine metabolomics was first analysed to explore the therapeutic mechanisms of HQT in UC rats induced by TNBS. We identified 28 potential biomarkers affected by HQT that might cause changes in urine metabolism in UC rats, mapped the network of metabolic pathways, and revealed how HQT affects metabolism of UC rats. The results showed that UC affects amino acid metabolism and biosynthesis of unsaturated fatty acids and impairs the tricarboxylic acid cycle (TCA cycle). UC induced inflammatory and gastrointestinal reactions by inhibiting the transport of fatty acids and disrupting amino acid metabolism. HQT plays key roles via regulating the level of biomarkers in the metabolism of amino acids, lipids, and so on, normalizing metabolic disorders. In addition, histopathology and other bioinformatics analysis further confirm that HQT altered UC rat physiology and pathology, ultimately affecting metabolic function of UC rats.

4.
Int J Genomics ; 2020: 4238757, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32300604

RESUMO

In this study, we explored the pharmacological mechanisms of Huangqin Tang (HQT; a traditional Chinese medicine formula) in ulcerative colitis (UC) and provided evidence for potential roles HQT plays by gene expression profiling. The UC rat model was made via a compound method (trinitrobenzene sulfonic acid plus ethanol). After a ten-day treatment, microarray analysis was performed from the colon segment of the rats. Biological functions and specific signaling pathways were enriched based on differentially expressed genes (DEG), and corresponding gene networks were constructed via Ingenuity Pathway Analysis (IPA). Through the network, we screened the potential "candidate targets," such as ITGB1, FN1, CASP3, and ITGA5 and FABP1, ABCB1, FABP2, and SLC51B. These potential candidate targets were functionally related to immune responses, inflammation, and metabolism. Moreover, HQT significantly decreased serum levels of proinflammatory factors nitrogen monoxide (NO), proinflammatory cytokines interleukin- (IL-) 17, and prostaglandin E2 (PGE2). The degree of HE staining of colonic tissue was severe in the model group but reduced significantly in the HQT group. HQT exhibited protective effects against colon damage by inhibiting the inflammatory response.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...