Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-35707473

RESUMO

The Jiedu Huazhuo Quyu formula (JHQ) shows significant beneficial effects against liver fibrosis caused by Wilson's disease (WD). Hence, this study aimed to clarify the mechanisms of the JHQ treatment in WD-associated liver fibrosis. First, we collected 103 active compounds and 527 related targets of JHQ and 1187 targets related to WD-associated liver fibrosis from multiple databases. Next, 113 overlapping genes (OGEs) were obtained. Then, we built a protein-protein interaction (PPI) network with Cytoscape 3.7.2 software and performed the Gene Ontology (GO) term and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway enrichment analyses with GENE DENOVO online sites. Furthermore, module analysis was performed, and the core target genes in the JHQ treatment of WD-associated liver fibrosis were obtained. Pathway and functional enrichment analyses, molecular docking studies, molecular dynamic (MD) simulation, and Western blot (WB) were then performed. The results indicated that 8 key active compounds including quercetin, luteolin, and obacunone in JHQ might affect the 6 core proteins including CXCL8, MAPK1, and AKT1 and 107 related signaling pathways including EGFR tyrosine kinase inhibitor resistance, Kaposi sarcoma-associated herpesvirus infection, and human cytomegalovirus infection signaling pathways to exhibit curative effects on WD-associated liver fibrosis. Mechanistically, JHQ might inhibit liver inflammatory processes and vascular hyperplasia, regulate the cell cycle, and suppress both the activation and proliferation of hepatic stellate cells (HSCs). This study provides novel insights for researchers to systematically explore the mechanism of JHQ in treating WD-associated liver fibrosis.

2.
Chem Biodivers ; 17(9): e2000326, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32744414

RESUMO

Medical fungi polysaccharides belong to a very important species of biological macromolecules, which are the basic substances that effectively maintain and ensure the normal operation of biological life activities. However, research on extraction and biological activity of Inonotus cuticularis polysaccharides has never been reported. In this study, the optimum yield of Inonotus cuticularis polysaccharides was determined by the orthogonal experimental design. The highest yield of 3.10±0.06 % was obtained with extraction temperature of 80 °C, extraction time of 150 min, and water to raw material ratio of 30 mL/g and repeated twice. After deproteinization for 5 times, the protein removal rate reached 70.10±1.75 %, and the content of polysaccharides and protein were 46.64 and 0.42 %. Infrared spectrometer indicated that Inonotus cuticularis polysaccharides are typical ß-pyranose with characteristic peaks of polysaccharides. Subsequently, the activities of scavenging free radicals for the deproteinated polysaccharides were studied. When the concentration of Inonotus cuticularis polysaccharides was 0.3 mg/mL, the scavenging activities of the sample on DPPH. , . OH, ABTS.+ and O2 .- reached 83.67±0.27, 65.21±4.82, 43.45±1.36 and 80.28±2.30 %, respectively, and the reducing power reached 0.46±0.01. The IC50 values scavenging DPPH. , . OH, ABTS.+ and O2 .- were 0.139±0.13, 0.162±0.14, 0.317±0.30 and 0.121±0.10 mg/mL, respectively. Results showed that Inonotus cuticularis polysaccharides present potential stronger antioxidant activities, especially .OH scavenging activity and reducing power. Experimental results could provide research basis of Inonotus cuticularis polysaccharides for further exploitation and utilization.


Assuntos
Antioxidantes/farmacologia , Desenho de Fármacos , Inonotus/química , Polissacarídeos/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Benzotiazóis/antagonistas & inibidores , Compostos de Bifenilo/antagonistas & inibidores , Relação Dose-Resposta a Droga , Radical Hidroxila/antagonistas & inibidores , Oxigênio/química , Picratos/antagonistas & inibidores , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Relação Estrutura-Atividade , Ácidos Sulfônicos/antagonistas & inibidores
3.
Artigo em Inglês | MEDLINE | ID: mdl-29777931

RESUMO

Dolores Reyman et al. found the norharmane (9H-pyrido [3,4-b] indole) (NHM) and two acetic acid molecules can form the ternary complex (NHM-2A) in component solvent of dichloromethane and acetic acid via the hydrogen bond chain (J. Lumin. 2014, 148, 64). But the specific reaction details during this process were rarely reported. In this study, we will give an insight into the reasons which promote the occurrence of this reaction as well as its reaction order. The hydrogen bond enhancing behavior in first excited state (S1) is verified through the analysis of geometric configurations, infrared spectra, frontier molecular orbitals and potential energy curves. The absorption and fluorescence spectra we calculated are well coincident with the experimental results. Meanwhile, it is obvious that the hydrogen bond intensity is gradually enhanced from N1H2⋯O3, O4H5⋯O6 to O7H8⋯N9 by analyzing the reduced density gradient (RDG) isosurface. The hydrogen bond strengthening mechanism has been confirmed in which the hydrogen bond interaction acts as driving force for excited state proton transfer (ESPT) reaction. In order to provide a reliable description of the reaction energy profiles, we compare the barrier differences obtained by m062x and B3LYP methods. We might safely draw the conclusion that the multiple ESPT is a gradual process initiated by the proton transfer of O7H8⋯N9. And we further proof the ESPT process can be completed via the NHM-2A → NHM-2AS → NHM-2AD → NHM-2AT in S1 state. Theoretical research of NHM-2A has been carried out by density functional theory (DFT) and time-dependent density functional theory (TDDFT). It is worth noting that we predicted that the fluorescence at 400 nm observed in experiment is more likely to be emitted by NHM-2AS in S1 state.

4.
Artigo em Inglês | MEDLINE | ID: mdl-28433832

RESUMO

The symmetrical structures 2,5-bis(benzoxazol-2-yl)thiophene-3,4-diol (BBTD) can take shape two intramolecular hydrogen bonds in chloroform. In order to research the molecular dynamic behavior of BBTD upon photo-induced process, we utilize density functional theory (DFT) and time-dependent density functional theory (TDDFT) to complete theoretical calculation. Through the comparison of bond length, bond angle, IR spectra, and frontier molecular orbitals between ground state (S0) and first excited state (S1), it clearly indicates that photoexcitation have slightly influence for intensity of hydrogen bond. For the sake of understanding the mechanism of excited state intramolecular proton transfer (ESIPT) of BBTD in chloroform, potential energy surfaces have been scanned along with the orientation of O1-H2 and O4-H5 in S0 and S1 state, respectively. A intrigued hydrogen bond dynamic phenomenon has been found that ESIPT of BBTD is not a synergetic double proton transfer process, but a stepwise single proton transfer process BBTD→BBTD-S→BBTD-D. Moreover, the proton transfer process of BBTD-S→BBTD-D is easier to occur than that of BBTD→BBTD-S in S1 state.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...