Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38892313

RESUMO

Spinach (Spinacia oleracea L.) is a dioecious, diploid, wind-pollinated crop cultivated worldwide. Sex determination plays an important role in spinach breeding. Hence, this study aimed to understand the differences in sexual differentiation and floral organ development of dioecious flowers, as well as the differences in the regulatory mechanisms of floral organ development of dioecious and monoecious flowers. We compared transcriptional-level differences between different genders and identified differentially expressed genes (DEGs) related to spinach floral development, as well as sex-biased genes to investigate the flower development mechanisms in spinach. In this study, 9189 DEGs were identified among the different genders. DEG analysis showed the participation of four main transcription factor families, MIKC_MADS, MYB, NAC, and bHLH, in spinach flower development. In our key findings, abscisic acid (ABA) and gibberellic acid (GA) signal transduction pathways play major roles in male flower development, while auxin regulates both male and female flower development. By constructing a gene regulatory network (GRN) for floral organ development, core transcription factors (TFs) controlling organ initiation and growth were discovered. This analysis of the development of female, male, and monoecious flowers in spinach provides new insights into the molecular mechanisms of floral organ development and sexual differentiation in dioecious and monoecious plants in spinach.


Assuntos
Flores , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Spinacia oleracea , Fatores de Transcrição , Spinacia oleracea/genética , Spinacia oleracea/crescimento & desenvolvimento , Flores/genética , Flores/crescimento & desenvolvimento , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica , Ácido Abscísico/metabolismo , Giberelinas/metabolismo
2.
Int J Mol Sci ; 24(24)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38139107

RESUMO

Aquaporins (AQPs) are mainly responsible for the transportation of water and other small molecules such as CO2 and H2O2, and they perform diverse functions in plant growth, in development, and under stress conditions. They are also active participants in cell signal transduction in plants. However, little is known about AQP diversity, biological functions, and protein characteristics in papaya. To better understand the structure and function of CpAQPs in papaya, a total of 29 CpAQPs were identified and classified into five subfamilies. Analysis of gene structure and conserved motifs revealed that CpAQPs exhibited a degree of conservation, with some differentiation among subfamilies. The predicted interaction network showed that the PIP subfamily had the strongest protein interactions within the subfamily, while the SIP subfamily showed extensive interaction with members of the PIP, TIP, NIP, and XIP subfamilies. Furthermore, the analysis of CpAQPs' promoters revealed a large number of cis-elements participating in light, hormone, and stress responses. CpAQPs exhibited different expression patterns in various tissues and under different stress conditions. Collectively, these results provided a foundation for further functional investigations of CpAQPs in ripening, as well as leaf, flower, fruit, and seed development. They also shed light on the potential roles of CpAQP genes in response to environmental factors, offering valuable insights into their biological functions in papaya.


Assuntos
Aquaporinas , Carica , Humanos , Carica/genética , Genoma de Planta , Filogenia , Proteínas de Plantas/metabolismo , Verduras/metabolismo , Aquaporinas/metabolismo , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica
3.
BMC Plant Biol ; 23(1): 52, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36694139

RESUMO

BACKGROUND: Diseases are the major factor affecting the quality and yield of sugarcane during its growth and development. However, our knowledge about the factors regulating disease responses remain limited. The present study focuses on identifying genes regulating transcriptional mechanisms responsible for resistance to leaf scald caused by Xanthomonas albilineans in S. spontaneum and S. officinarum. RESULTS: After inoculation of the two sugarcane varieties SES208 (S. spontaneum) and LA Purple (S. officinarum) with Xanthomonas albilineans, SES208 exhibited significantly greater resistance to leaf scald caused by X. albilineans than did LA Purple. Using transcriptome analysis, we identified a total of 4323 and 1755 differentially expressed genes (DEGs) in inoculated samples of SES208 and LA Purple, respectively. Significantly, 262 DEGs were specifically identified in SES208 that were enriched for KEGG pathway terms such as plant-pathogen interaction, MAPK signaling pathway, and plant hormone signal transduction. Furthermore, we built a transcriptional regulatory co-expression network that specifically identified 16 and 25 hub genes in SES208 that were enriched for putative functions in plant-pathogen interactions, MAPK signaling, and plant hormone signal transduction. All of these essential genes might be significantly involved in resistance-regulating responses in SES208 after X. albilineans inoculation. In addition, we found allele-specific expression in SES208 that was associated with the resistance phenotype of SES208 when infected by X. albilineans. After infection with X. albilineans, a great number of DEGs associated with the KEGG pathways 'phenylpropanoid biosynthesis' and 'flavonoid biosynthesis' exhibited significant expression changes in SES208 compared to LA Purple that might contribute to superior leaf scald resistance in SES208. CONCLUSIONS: We provided the first systematical transcriptome map that the higher resistance of SES208 is associated with and elicited by the rapid activation of multiple clusters of defense response genes after infection by X. albilineans and not merely due to changes in the expression of genes generically associated with stress resistance. These results will serve as the foundation for further understanding of the molecular mechanisms of resistance against X. albilineans in S. spontaneum.


Assuntos
Saccharum , Xanthomonas , Saccharum/genética , Xanthomonas/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Perfilação da Expressão Gênica , Transcriptoma , Doenças das Plantas/genética
4.
Nat Genet ; 54(5): 715-724, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35551309

RESUMO

Transgenic papaya is widely publicized for controlling papaya ringspot virus. However, the impact of particle bombardment on the genome remains unknown. The transgenic SunUp and its progenitor Sunset genomes were assembled into 351.5 and 350.3 Mb in nine chromosomes, respectively. We identified a 1.64 Mb insertion containing three transgenic insertions in SunUp chromosome 5, consisting of 52 nuclear-plastid, 21 nuclear-mitochondrial and 1 nuclear genomic fragments. A 591.9 kb fragment in chromosome 5 was translocated into the 1.64 Mb insertion. We assembled a gapless 9.8 Mb hermaphrodite-specific region of the Yh chromosome and its 6.0 Mb X counterpart. Resequencing 86 genomes revealed three distinct groups, validating their geographic origin and breeding history. We identified 147 selective sweeps and defined the essential role of zeta-carotene desaturase in carotenoid accumulation during domestication. Our findings elucidated the impact of particle bombardment and improved our understanding of sex chromosomes and domestication to expedite papaya improvement.


Assuntos
Carica , Carica/genética , Cromossomos de Plantas/genética , Domesticação , Melhoramento Vegetal , Cromossomos Sexuais
5.
Plant J ; 108(4): 1037-1052, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34519122

RESUMO

Rambutan is a popular tropical fruit known for its exotic appearance, has long flexible spines on shells, extraordinary aril growth, desirable nutrition, and a favorable taste. The genome of an elite rambutan cultivar Baoyan 7 was assembled into 328 Mb in 16 pseudo-chromosomes. Comparative genomics analysis between rambutan and lychee revealed that rambutan chromosomes 8 and 12 are collinear with lychee chromosome 1, which resulted in a chromosome fission event in rambutan (n = 16) or a fusion event in lychee (n = 15) after their divergence from a common ancestor 15.7 million years ago. Root development genes played a crucial role in spine development, such as endoplasmic reticulum pathway genes, jasmonic acid response genes, vascular bundle development genes, and K+ transport genes. Aril development was regulated by D-class genes (STK and SHP1), plant hormone and phenylpropanoid biosynthesis genes, and sugar metabolism genes. The lower rate of male sterility of hermaphroditic flowers appears to be regulated by MYB24. Population genomic analyses revealed genes in selective sweeps during domestication that are related to fruit morphology and environment stress response. These findings enhance our understanding of spine and aril development and provide genomic resources for rambutan improvement.


Assuntos
Frutas/genética , Redes Reguladoras de Genes/genética , Genoma de Planta/genética , Sapindaceae/genética , Transcriptoma , Adaptação Fisiológica , Domesticação , Flores/genética , Flores/crescimento & desenvolvimento , Frutas/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Genômica , Glucosídeos/biossíntese , Taninos Hidrolisáveis , Anotação de Sequência Molecular , Fotossíntese , Sapindaceae/crescimento & desenvolvimento , Especificidade da Espécie , Paladar
6.
Nat Genet ; 53(8): 1250-1259, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34267370

RESUMO

Tea is an important global beverage crop and is largely clonally propagated. Despite previous studies on the species, its genetic and evolutionary history deserves further research. Here, we present a haplotype-resolved assembly of an Oolong tea cultivar, Tieguanyin. Analysis of allele-specific expression suggests a potential mechanism in response to mutation load during long-term clonal propagation. Population genomic analysis using 190 Camellia accessions uncovered independent evolutionary histories and parallel domestication in two widely cultivated varieties, var. sinensis and var. assamica. It also revealed extensive intra- and interspecific introgressions contributing to genetic diversity in modern cultivars. Strong signatures of selection were associated with biosynthetic and metabolic pathways that contribute to flavor characteristics as well as genes likely involved in the Green Revolution in the tea industry. Our results offer genetic and molecular insights into the evolutionary history of Camellia sinensis and provide genomic resources to further facilitate gene editing to enhance desirable traits in tea crops.


Assuntos
Camellia sinensis/genética , Genoma de Planta , Haplótipos , Proteínas de Plantas/genética , Alelos , Evolução Biológica , Camellia sinensis/metabolismo , Produtos Agrícolas/genética , Domesticação , Regulação da Expressão Gênica de Plantas , Introgressão Genética , Variação Genética , Genética Populacional , Filogenia , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único
7.
Sci Rep ; 11(1): 14429, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34257328

RESUMO

DNA-binding with one finger (Dof) are plant-specific transcription factors involved in numerous pathways of plant development, such as abiotic stresses responses. Although genome-wide analysis of Dof genes has been performed in many species, but these genes in spinach have not been analyzed yet. We performed a genome-wide analysis and characterization of Dof gene family in spinach (Spinacia oleracea L.). Twenty-two Dof genes were identified and classified into four groups with nine subgroups, which was further corroborated by gene structure and motif analyses. Ka/Ks analysis revealed that SoDofs were subjected to purifying selection. Using cis-acting elements analysis, SoDofs were involved in plant growth and development, plant hormones, and stress responses. Expression profiling demonstrated that SoDofs expressed in leaf and inflorescence, and responded to cold, heat, and drought stresses. SoDof22 expressed the highest level in male flowers and under cold stress. These results provided a genome-wide analysis of SoDof genes, their gender- and tissue-specific expression, and response to abiotic stresses. The knowledge and resources gained from these analyses will benefit spinach improvement.


Assuntos
Spinacia oleracea , Estresse Fisiológico , Resposta ao Choque Frio , Flores , Regulação da Expressão Gênica de Plantas , Folhas de Planta
8.
Mitochondrial DNA B Resour ; 6(2): 395-396, 2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33659690

RESUMO

Camellia sinensis var. sinensis cultivar Tieguanyin (TGY) is an important Oolong tea variety in China. In this study, we reported a complete chloroplast (cp) genome based on the Illumina sequencing technology and combined de novo and reference-guided assembly strategies. The complete cp genome of 'TGY' displayed the regular quadripartite structure: a total of 157,126 bp in length, comprising a large single-copy (LSC, 86,904 bp) region, a small single-copy (SSC, 18,532 bp) region, and a pair of inverted repeats (IRs, 26,095 bp) regions. A lot of 132 predicted genes, including 87 protein-coding genes, 37 tRNA genes, and eight rRNA genes. The overall GC content is 37.3%. Maximum likelihood (ML) phylogenetic tree involving 18 cp genomes of the Camellia genus revealed a relatively independent event of local domestication among three types of cultivars. The complete cp genome of 'TGY' provides an insight into tea plants for further understanding evolutionary research on tea plants.

9.
J Plant Physiol ; 260: 153405, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33743435

RESUMO

In vitro organogenesis is a multistep process which is largely controlled by the balance between auxin and cytokinin. Previous studies revealed a complex network regulating in vitro organogenesis in Arabidopsis thaliana; however, our knowledge of the molecular mechanisms underlying de novo shoot formation in papaya (Carica papaya) remains limited. Here, we optimized multiple factors to achieve an efficient and reproducible protocol for the induction of papaya callus formation and shoot regeneration. Subsequently, we analyzed the dynamic transcriptome profiles of samples undergoing this process, identified 5381, 642, 4047, and 2386 differentially expressed genes (DEGs), including 447, 66, 350, and 263 encoding transcription factors (TFs), in four stage comparisons. The DEGs were mainly involved in phytohormone modulation and transduction processes, particularly for auxin and cytokinin. Of these, 21 and 7 candidate genes involved in the auxin and cytokinin pathways, respectively, had distinct expression patterns throughout in vitro organogenesis. Furthermore, we found two genes encoding key TFs, CpLBD19 and CpESR1, were sharply induced on callus induction medium and shoot induction medium, indicating these two TFs may serve as proxies for callus induction and shoot formation in papaya. We therefore report a regulatory network of auxin and cytokinin signaling in papaya according to the one previously modeled for Arabidopsis. Our comprehensive analyses provide insight into the early molecular regulation of callus initiation and shoot formation in papaya, and are useful for the further identification of the regulators governing in vitro organogenesis.


Assuntos
Carica/fisiologia , Citocininas/metabolismo , Ácidos Indolacéticos/metabolismo , Organogênese Vegetal/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Brotos de Planta/fisiologia , Regeneração , Estresse Fisiológico
10.
PLoS One ; 15(1): e0227716, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31945094

RESUMO

Dof transcription factors plant-specific and associates with growth and development in plants. We conducted comprehensive and systematic analyses of Dof transcription factors in sugarcane, and identified 29 SsDof transcription factors in sugarcane genome. Those SsDof genes were divided into five groups, with similar gene structures and conserved motifs within the same groups. Segmental duplications are predominant in the evolution of Dof in sugarcane. Cis-element analysis suggested that the functions of SsDofs were involved in growth and development, hormones and abiotic stresses responses in sugarcane. Expression patterns indicated that SsDof7, SsDof23 and SsDof24 had a comparatively high expression in all detected tissues, indicating these genes are crucial in sugarcane growth and development. Moreover, we examined the transcription levels of SsDofs under four plant hormone treatments, SsDof7-3 and SsDof7-4 were down-regulated after ABA treatment, while SsDof7-1 and SsDof7-2 were induced after the same treatment, indicating different alleles may play different roles in response to plant hormones. We also analyzed SsDofs' expression profiling under four abiotic stresses, SsDof5 and SsDof28 significantly responded to these four stresses, indicating they are associate with abiotic stresses responses. Collectively, our results yielded allele specific expression of Dof genes responding to hormones and abiotic stresses in sugarcane, and their cis-elements could be crucial for sugarcane improvement.


Assuntos
Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Plantas/metabolismo , Saccharum/fisiologia , Estresse Fisiológico/genética , Fatores de Transcrição/metabolismo , Alelos , Duplicação Gênica/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genoma de Planta/genética , Filogenia , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...