Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 181
Filtrar
1.
Int J Nanomedicine ; 19: 5781-5792, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38882546

RESUMO

Background: While nanoplatform-based cancer theranostics have been researched and investigated for many years, enhancing antitumor efficacy and reducing toxic side effects is still an essential problem. Methods: We exploited nanoparticle coordination between ferric (Fe2+) ions and telomerase-targeting hairpin DNA structures to encapsulate doxorubicin (DOX) and fabricated Fe2+-DNA@DOX nanoparticles (BDDF NPs). This work studied the NIR fluorescence imaging and pharmacokinetic studies targeting the ability and biodistribution of BDDF NPs. In vitro and vivo studies investigated the nano formula's toxicity, imaging, and synergistic therapeutic effects. Results: The enhanced permeability and retention (EPR) effect and tumor targeting resulted in prolonged blood circulation times and high tumor accumulation. Significantly, BDDF NPs could reduce DOX-mediated cardiac toxicity by improving the antioxidation ability of cardiomyocytes based on the different telomerase activities and iron dependency in normal and tumor cells. The synergistic treatment efficacy is enhanced through Fe2+-mediated ferroptosis and the ß-catenin/p53 pathway and improved the tumor inhibition rate. Conclusion: Harpin DNA-based nanoplatforms demonstrated prolonged blood circulation, tumor drug accumulation via telomerase-targeting, and synergistic therapy to improve antitumor drug efficacy. Our work sheds new light on nanomaterials for future synergistic chemotherapy.


Assuntos
Doxorrubicina , Telomerase , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Doxorrubicina/administração & dosagem , Animais , Humanos , Telomerase/metabolismo , Linhagem Celular Tumoral , Camundongos , DNA/química , DNA/farmacocinética , DNA/administração & dosagem , Distribuição Tecidual , Nanopartículas/química , Neoplasias/tratamento farmacológico , Ferroptose/efeitos dos fármacos , Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/farmacocinética , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/administração & dosagem , Camundongos Endogâmicos BALB C , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética
2.
Nutrients ; 16(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38892478

RESUMO

BACKGROUND: The relative availability of the essential amino acid tryptophan in the brain, as indicated by the tryptophan index, which is the ratio of tryptophan to its competing amino acids (CAAs) in circulation, has been related to major depression. However, it remains unknown whether tryptophan availability is involved in the pathogenesis of ischemic stroke. AIMS: We aimed to investigate the relationship between the tryptophan index and the risk of ischemic stroke. METHODS: We performed a nested case-control study within a community-based cohort in eastern China over the period 2013 to 2018. The analysis included 321 cases of ischemic stroke and 321 controls matched by sex and date of birth. The plasma levels of tryptophan and CAAs, including tyrosine, valine, phenylalanine, leucine, and isoleucine, were measured by ultra-high-performance liquid chromatography-tandem mass spectrometry. Conditional logistic regression analyses were employed to determine incidence rate ratios (IRRs) and their 95% confidence intervals (CIs). RESULTS: After adjustment for body mass index, current smoking status, educational attainment, physical activity, family history of stroke, hypertension, diabetes, hyperlipidemia, and estimated glomerular filtration rate, an elevated tryptophan index was significantly associated with a reduced risk of ischemic stroke in a dose-response manner (IRR, 0.76; 95% CI, 0.63-0.93, per standard deviation increment). The plasma tryptophan or CAAs were not separately associated with the risk of ischemic stroke. CONCLUSIONS: The tryptophan index was inversely associated with the risk of ischemic stroke. Our novel observations suggest that the availability of the essential amino acid tryptophan in the brain is involved in the pathogenesis of ischemic stroke.


Assuntos
AVC Isquêmico , Triptofano , Humanos , Estudos de Casos e Controles , Feminino , Masculino , Triptofano/sangue , Pessoa de Meia-Idade , AVC Isquêmico/epidemiologia , AVC Isquêmico/sangue , AVC Isquêmico/etiologia , Idoso , Fatores de Risco , China/epidemiologia
3.
ACS Nano ; 18(24): 15779-15789, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38833666

RESUMO

The property of being stubborn and degradation resistant makes nanoplastic (NP) pollution a long-standing remaining challenge. Here, we apply a designed top-down strategy to leverage the natural hierarchical structure of waste crayfish shells with exposed functional groups for efficient NP capture. The crayfish shell-based organic skeleton with improved flexibility, strength (14.37 to 60.13 MPa), and toughness (24.61 to 278.98 MJ m-3) was prepared by purposefully removing the inorganic components of crayfish shells through a simple two-step acid-alkali treatment. Due to the activated functional groups (e.g., -NH2, -CONH-, and -OH) and ordered architectures with macropores and nanofibers, this porous crayfish shell exhibited effective removal capability of NPs (72.92 mg g-1) by physical interception and hydrogen bond/electrostatic interactions. Moreover, the sustainability and stability of this porous crayfish shell were demonstrated by the maintained high-capture performance after five cycles. Finally, we provided a postprocessing approach that could convert both porous crayfish shell and NPs into a tough flat sheet. Thus, our feasible top-down engineering strategy combined with promising posttreatment is a powerful contender for a recycling approach with broad application scenarios and clear economic advantages for simultaneously addressing both waste biomass and NP pollutants.


Assuntos
Exoesqueleto , Astacoidea , Animais , Adsorção , Porosidade , Exoesqueleto/química , Microplásticos/química , Tamanho da Partícula , Propriedades de Superfície
4.
Exp Neurol ; 379: 114848, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38857749

RESUMO

The establishment of reliable human brain models is pivotal for elucidating specific disease mechanisms and facilitating the discovery of novel therapeutic strategies for human brain disorders. Human induced pluripotent stem cell (iPSC) exhibit remarkable self-renewal capabilities and can differentiate into specialized cell types. This makes them a valuable cell source for xenogeneic or allogeneic transplantation. Human-mouse chimeric brain models constructed from iPSC-derived brain cells have emerged as valuable tools for modeling human brain diseases and exploring potential therapeutic strategies for brain disorders. Moreover, the integration and functionality of grafted stem cells has been effectively assessed using these models. Therefore, this review provides a comprehensive overview of recent progress in differentiating human iPSC into various highly specialized types of brain cells. This review evaluates the characteristics and functions of the human-mouse chimeric brain model. We highlight its potential roles in brain function and its ability to reconstruct neural circuitry in vivo. Additionally, we elucidate factors that influence the integration and differentiation of human iPSC-derived brain cells in vivo. This review further sought to provide suitable research models for cell transplantation therapy. These research models provide new insights into neuropsychiatric disorders, infectious diseases, and brain injuries, thereby advancing related clinical and academic research.

5.
Sci Total Environ ; 946: 174276, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38936715

RESUMO

Soil legacy effects from previous crops can significantly influence plant-soil interactions in crop rotations. However, the microbial mechanism underlying this effect in subsequent root-associated compartments remains unclear. We investigated the effects of planting patterns (four-year continuous maize [MM], three-year winter wheat and one-year maize rotation [WM], and three-year potato and one-year maize rotation [PM]) on the microbial composition and structure of root-associated compartments, the effect of distinct crops on subsequent microbial co-occurrence patterns, and the assembly mechanism by which the root-associated compartments (bulk soil, rhizosphere, and roots) in subsequent crops regulate the microbiome habitat. Compared with MM, the relative abundance of Acidobacteria in WM was 29.7 % lower, whereas that of Bacteroidota in PM was 37.9 % higher in all three compartments. The co-occurrence patterns of the microbial communities exhibited varied responses to different planting patterns. Indicator taxon analysis revealed less shared and specific species in the root bacterial and fungal networks. The planting pattern elicited specific responses from modules within bacterial and fungal co-occurrence networks in all three compartments. Moreover, the planting patterns and root-associated compartments collectively drove the assembly process of root-associated microorganisms. The neutral model showed that, compared with MM, the stochasticity of bacterial assembly decreased under WM and PM but increased for fungal assembly. WM and PM increased the relative effects of the homogenized dispersal of fungal assemblies in roots. We conclude that previous crops exhibit marked legacy effects in the root-associated microbiome. Therefore, soil heritage should not be ignored when discussing microbiome recruitment strategies and co-occurrence patterns in subsequent crops.

6.
Opt Lett ; 49(9): 2433-2436, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691737

RESUMO

We present for the first time, to the best of our knowledge, the pump-power-controlled, all-polarization-maintaining (all-PM), all-fiber configured, wavelength-tunable mode-locked fiber laser in the L-band (1565 to 1625 nm). A tuning range over 20 nm (1568.2  to 1588.9 nm) is attained simply by varying the pump power between 45 and 115 mW. Our work represents the first demonstration of wavelength tuning in all-PM configured nonlinear polarization evolution (NPE) lasers. The non-mechanical and electrically controllable tuning method offers ease of use and cost efficiency within an advanced all-PM, all-fiber design, indicating promising adaptability to diverse wavelength bands.

7.
Nat Commun ; 15(1): 3987, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734698

RESUMO

Despite advances in active drug targeting for blood-brain barrier penetration, two key challenges persist: first, attachment of a targeting ligand to the drug or drug carrier does not enhance its brain biodistribution; and second, many brain diseases are intricately linked to microcirculation disorders that significantly impede drug accumulation within brain lesions even after they cross the barrier. Inspired by the neuroprotective properties of vinpocetine, which regulates cerebral blood flow, we propose a molecular library design centered on this class of cyclic tertiary amine compounds and develop a self-enhanced brain-targeted nucleic acid delivery system. Our findings reveal that: (i) vinpocetine-derived ionizable-lipidoid nanoparticles efficiently breach the blood-brain barrier; (ii) they have high gene-loading capacity, facilitating endosomal escape and intracellular transport; (iii) their administration is safe with minimal immunogenicity even with prolonged use; and (iv) they have potent pharmacologic brain-protective activity and may synergize with treatments for brain disorders as demonstrated in male APP/PS1 mice.


Assuntos
Barreira Hematoencefálica , Encéfalo , Circulação Cerebrovascular , Nanopartículas , Alcaloides de Vinca , Animais , Alcaloides de Vinca/farmacologia , Alcaloides de Vinca/farmacocinética , Alcaloides de Vinca/administração & dosagem , Alcaloides de Vinca/química , Nanopartículas/química , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Camundongos , Circulação Cerebrovascular/efeitos dos fármacos , Masculino , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/irrigação sanguínea , Humanos , Fármacos Neuroprotetores/farmacocinética , Fármacos Neuroprotetores/farmacologia , Camundongos Endogâmicos C57BL , Distribuição Tecidual , Sistemas de Liberação de Medicamentos , Camundongos Transgênicos
8.
Patterns (N Y) ; 5(4): 100950, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38645767

RESUMO

Standard energy-consumption testing, providing the only publicly available quantifiable measure of battery electric vehicle (BEV) energy consumption, is crucial for promoting transparency and accountability in the electrified automotive industry; however, significant discrepancies between standard testing and real-world driving have hindered energy and environmental assessments of BEVs and their broader adoption. In this study, we propose a data-driven evaluation method for standard testing to characterize BEV energy consumption. By decoupling the impact of the driving profile, our evaluation approach is generalizable to various driving conditions. In experiments with our approach for estimating energy consumption, we achieve a 3.84% estimation error for 13 different multiregional standardized test cycles and a 7.12% estimation error for 106 diverse real-world trips. Our results highlight the great potential of the proposed approach for promoting public awareness of BEV energy consumption through standard testing while also providing a reliable fundamental model of BEVs.

9.
Prostate ; 84(8): 780-787, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38558415

RESUMO

BACKGROUND: Nowadays, there are many patients who undergo unnecessary prostate biopsies after receiving a prostate imaging reporting and data system (PI-RADS) score of 3. Our purpose is to identify cutoff values of the prostate volume (PV) and minimum apparent diffusion coefficient (ADCmin) to stratify those patients to reduce unnecessary prostate biopsies. METHODS: Data from 224 qualified patients who received prostate biopsies from January 2019 to June 2023 were collected. The Mann-Whitney U test was used to compare non-normal distributed continuous variables, which were recorded as median (interquartile ranges). The correlation coefficients were calculated using Spearman's rank correlation analysis. Categorical variables are recorded by numbers (percentages) and compared by χ2 test. Both univariate and multivariate logistic regression analysis were used to determine the independent predictors. The receiver-operating characteristic curve and the area under the curve (AUC) were used to evaluate the diagnostic performance of clinical variables. RESULTS: Out of a total of 224 patients, 36 patients (16.07%) were diagnosed with clinically significant prostate cancer (csPCa), whereas 72 patients (32.14%) were diagnosed with any grade prostate cancer. The result of multivariate analysis demonstrated that the PV (p < 0.001, odds ratio [OR]: 0.952, 95% confidence interval [95% CI]: 0.927-0.978) and ADCmin (p < 0.01, OR: 0.993, 95% CI: 0.989-0.998) were the independent factors for predicting csPCa. The AUC values of the PV and ADCmin were 0.779 (95% CI: 0.718-0.831) and 0.799 (95% CI: 0.740-0.849), respectively, for diagnosing csPCa. After stratifying patients by PV and ADCmin, 24 patients (47.06%) with "PV < 55 mL and ADCmin < 685 µm2/s" were diagnosed with csPCa. However, only one patient (1.25%) with PV ≥ 55 mL and ADCmin ≥ 685 µm2/s were diagnosed with csPCa. CONCLUSIONS: In this study, we found the combination of PV and ADCmin can stratify patients with a PI-RADS score of 3 to reduce unnecessary prostate biopsies. These patients with "PV ≥ 55 mL and ADCmin ≥ 685 µm2/s" may safely avoid prostate biopsies.


Assuntos
Próstata , Neoplasias da Próstata , Humanos , Masculino , Neoplasias da Próstata/patologia , Neoplasias da Próstata/diagnóstico por imagem , Próstata/patologia , Próstata/diagnóstico por imagem , Pessoa de Meia-Idade , Idoso , Tamanho do Órgão , Biópsia , Procedimentos Desnecessários/estatística & dados numéricos , Estudos Retrospectivos , Imagem de Difusão por Ressonância Magnética/métodos , Curva ROC
10.
Transl Neurosci ; 15(1): 20220327, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38529016

RESUMO

Background: Both the International Mission for Prognosis and Analysis of Clinical Trials (IMPACT) and the Corticosteroid randomization after significant head injury (CRASH) models are globally acknowledged prognostic algorithms for assessing traumatic brain injury (TBI) outcomes. The aim of this study is to externalize the validation process and juxtapose the prognostic accuracy of the CRASH and IMPACT models in moderate-to-severe TBI patients in the Chinese population. Methods: We conducted a retrospective study encompassing a cohort of 340 adult TBI patients (aged > 18 years), presenting with Glasgow Coma Scale (GCS) scores ranging from 3 to 12. The data were accrued over 2 years (2020-2022). The primary endpoints were 14-day mortality rates and 6-month Glasgow Outcome Scale (GOS) scores. Analytical metrics, including the area under the receiver operating characteristic curve for discrimination and the Brier score for predictive precision were employed to quantitatively evaluate the model performance. Results: Mortality rates at the 14-day and 6-month intervals, as well as the 6-month unfavorable GOS outcomes, were established to be 22.06, 40.29, and 65.59%, respectively. The IMPACT models had area under the curves (AUCs) of 0.873, 0.912, and 0.927 for the 6-month unfavorable GOS outcomes, with respective Brier scores of 0.14, 0.12, and 0.11. On the other hand, the AUCs associated with the six-month mortality were 0.883, 0.909, and 0.912, and the corresponding Brier scores were 0.15, 0.14, and 0.13, respectively. The CRASH models exhibited AUCs of 0.862 and 0.878 for the 6-month adverse outcomes, with uniform Brier scores of 0.18. The 14-day mortality rates had AUCs of 0.867 and 0.87, and corresponding Brier scores of 0.21 and 0.22, respectively. Conclusion: Both the CRASH and IMPACT algorithms offer reliable prognostic estimations for patients suffering from craniocerebral injuries. However, compared to the CRASH model, the IMPACT model has superior predictive accuracy, albeit at the cost of increased computational intricacy.

11.
CNS Neurosci Ther ; 30(3): e14664, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38516781

RESUMO

AIMS: Neuroblastoma (NB) is the most common extracranial solid tumor in children, with a 5-year survival rate of <50% in high-risk patients. MYCN amplification is an important factor that influences the survival rate of high-risk patients. Our results indicated MYCN regulates the expression of SESN1. Therefore, this study aimed to investigate the role and mechanisms of SESN1 in NB. METHODS: siRNAs or overexpression plasmids were used to change MYCN, SESN1, or MyD88's expression. The role of SESN1 in NB cell proliferation, migration, and invasion was elucidated. Xenograft mice models were built to evaluate SESN1's effect in vivo. The correlation between SESN1 expression and clinicopathological data of patients with NB was analyzed. RNA-Seq was done to explore SESN1's downstream targets. RESULTS: SESN1 was regulated by MYCN in NB cells. Knockdown SESN1 promoted NB cell proliferation, cell migration, and cell invasion, and overexpressing SESN1 had opposite functions. Knockdown SESN1 promoted tumor growth and shortened tumor-bearing mice survival time. Low expression of SESN1 had a positive correlation with poor prognosis in patients with NB. RNA-Seq showed that Toll-like receptor (TLR) signaling pathway, and PD-L1 expression and PD-1 checkpoint pathway in cancer were potential downstream targets of SESN1. Knockdown MyD88 or TLRs inhibitor HCQ reversed the effect of knockdown SESN1 in NB cells. High expression of SESN1 was significantly associated with a higher immune score and indicated an active immune microenvironment for patients with NB. CONCLUSIONS: SESN1 functions as a new tumor suppressor gene via TLR signaling pathway in NB.


Assuntos
Fator 88 de Diferenciação Mieloide , Neuroblastoma , Criança , Humanos , Animais , Camundongos , Proteína Proto-Oncogênica N-Myc/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Fatores de Transcrição/genética , Transdução de Sinais/genética , Neuroblastoma/patologia , Genes Supressores de Tumor , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral , Sestrinas/genética , Sestrinas/metabolismo
12.
J Colloid Interface Sci ; 664: 433-443, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38484512

RESUMO

The generation of hazardous intermediates during the process of photocatalytic nitric oxide (NO) oxidation presents a tough issue. Herein, a one-step microwave strategy was employed to introduce oxygen vacancies (OVs) into zinc oxide-zinc stannate (ZnO-Zn2SnO4) heterojunction, resulting in an improvement in the photocatalytic efficiency for NO removal. The construction ZnO-Zn2SnO4 heterojunction with the OVs (ZSO-3) owns a significant contribution towards highly efficient electron transfer efficiency (99.7%), which renders ZSO-3 to exert a deep oxidation of NO-to-nitrate (NO3-) rather than NO-to-nitrite (NO2-) or NO-to-nitrogen dioxide (NO2). Based on the solid supports of experimental and simulated calculations, it can be found that OVs play an irreplaceable role in activating small molecules such as NO and O2. Moreover, the enhanced adsorption capacity of small molecules, which guarantees the high yield of active radical due to the formation of S-scheme heterojunction. This work illuminates a novel viewpoint on one-step in-situ route to prepare Zn2SnO4-based heterojunction photocatalyst with deep oxidation ability of NO-to-NO3-.

13.
J Agric Food Chem ; 72(9): 4587-4595, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38408430

RESUMO

4-Hydroxyphenylpyruvate dioxygenase (EC 1.13.11.27, HPPD) is one of the most widely studied herbicide targets and has gained significant attention. To identify potential effective HPPD inhibitors, a rational multistep virtual screening workflow was built, which included CBP models (based on the receptor-ligand interactions in the crystal complex), Hypogen models with activity prediction ability (according to the derivation of structure-activity relationships from a set of molecules with reported activity values), and a consensus docking procedure (consisting of LibDock, Glide, and CDOCKER). About 1 million molecules containing diketone or ß-keto-enol substructures were filtered by Lipinski's rules, CBP model, and Hypogen model. A total of 12 compounds with similar docking postures were generated by consensus docking. Eventually, four molecules were screened based on the specific binding pattern and affinity of the HPPD inhibitor. The biological evaluation in vivo displayed that compounds III-1 and III-2 exhibited comparable herbicidal activity to isoxaflutole and possessed superior safety on various crops (wheat, rice, sorghum, and maize). The ADMET prediction (absorption, distribution, metabolism, excretion, and toxicity) showed that compound III possessed relatively good toxicological results. This work provides a theoretical basis and valuable reference for the virtual screening and molecular design of novel HPPD inhibition herbicides.


Assuntos
4-Hidroxifenilpiruvato Dioxigenase , Herbicidas , Herbicidas/farmacologia , Herbicidas/química , Relação Estrutura-Atividade , Cetonas/química , 4-Hidroxifenilpiruvato Dioxigenase/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química
14.
Cancer Immunol Immunother ; 73(3): 48, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38349393

RESUMO

Monoamine oxidase A (MAOA) is a membrane-bound mitochondrial enzyme present in almost all vertebrate tissues that catalyzes the degradation of biogenic and dietary-derived monoamines. MAOA is known for regulating neurotransmitter metabolism and has been implicated in antitumor immune responses. In this review, we retrospect that MAOA inhibits the activities of various types of tumor-associated immune cells (such as CD8+ T cells and tumor-associated macrophages) by regulating their intracellular monoamines and metabolites. Developing novel MAOA inhibitor drugs and exploring multidrug combination strategies may enhance the efficacy of immune governance. Thus, MAOA may act as a novel immune checkpoint or immunomodulator by influencing the efficacy and effectiveness of immunotherapy. In conclusion, MAOA is a promising immune target that merits further in-depth exploration in preclinical and clinical settings.


Assuntos
Monoaminoxidase , Neoplasias , Humanos , Adjuvantes Imunológicos , Aminas , Linfócitos T CD8-Positivos , Inibidores de Checkpoint Imunológico , Fatores Imunológicos , Neoplasias/tratamento farmacológico
15.
Ecotoxicol Environ Saf ; 273: 116107, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38382348

RESUMO

Arsenic, a common metal-like substance, has been demonstrated to pose potential health hazards and induce behavioral changes in humans and rodents. However, the chronic neurotoxic effects of arsenic on aquatic animals are still not fully understood. This study aimed to investigate the effects of arsenic exposure on adult zebrafish by subjecting 3-month-old zebrafish to three different sodium arsenite water concentrations: 0 µg/L (control group), 50 µg/L, and 500 µg/L, over a period of 30 days. To assess the risk associated with arsenic exposure in the aquatic environment, behavior analysis, transmission electron microscopy techniques, and quantitative real-time PCR were employed. The behavior of adult zebrafish was evaluated using six distinct tests: the mirror biting test, shoaling test, novel tank test, social preference test, social recognition test, and T maze. Following the behavioral tests, the brains of zebrafish were dissected and collected for ultrastructural examination and gene expression analysis. The results revealed that sodium arsenite exposure led to a significant reduction in aggression, cohesion, social ability, social cognition ability, learning, and memory capacity of zebrafish. Furthermore, ultrastructure and genes regulating behavior in the zebrafish brain were adversely affected by sodium arsenite exposure.

16.
Bioact Mater ; 35: 208-227, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38327823

RESUMO

Repair of large bone defects caused by severe trauma, non-union fractures, or tumor resection remains challenging because of limited regenerative ability. Typically, these defects heal through mixed routines, including intramembranous ossification (IMO) and endochondral ossification (ECO), with ECO considered more efficient. Current strategies to promote large bone healing via ECO are unstable and require high-dose growth factors or complex cell therapy that cause side effects and raise expense while providing only limited benefit. Herein, we report a bio-integrated scaffold capable of initiating an early hypoxia microenvironment with controllable release of low-dose recombinant bone morphogenetic protein-2 (rhBMP-2), aiming to induce ECO-dominated repair. Specifically, we apply a mesoporous structure to accelerate iron chelation, this promoting early chondrogenesis via deferoxamine (DFO)-induced hypoxia-inducible factor-1α (HIF-1α). Through the delicate segmentation of click-crosslinked PEGylated Poly (glycerol sebacate) (PEGS) layers, we achieve programmed release of low-dose rhBMP-2, which can facilitate cartilage-to-bone transformation while reducing side effect risks. We demonstrate this system can strengthen the ECO healing and convert mixed or mixed or IMO-guided routes to ECO-dominated approach in large-size models with clinical relevance. Collectively, these findings demonstrate a biomaterial-based strategy for driving ECO-dominated healing, paving a promising pave towards its clinical use in addressing large bone defects.

17.
Nat Commun ; 15(1): 1383, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360821

RESUMO

Cobalt oxyhydroxide (CoOOH) is a promising catalytic material for oxygen evolution reaction (OER). In the traditional CoOOH structure, Co3+ exhibits a low-spin state configuration ([Formula: see text]), with electron transfer occurring in face-to-face [Formula: see text] orbitals. In this work, we report the successful synthesis of high-spin state Co3+ CoOOH structure, by introducing coordinatively unsaturated Co atoms. As compared to the low-spin state CoOOH, electron transfer in the high-spin state CoOOH occurs in apex-to-apex [Formula: see text] orbitals, which exhibits faster electron transfer ability. As a result, the high-spin state CoOOH performs superior OER activity with an overpotential of 226 mV at 10 mA cm-2, which is 148 mV lower than that of the low-spin state CoOOH. This work emphasizes the effect of the spin state of Co3+ on OER activity of CoOOH based electrocatalysts for water splitting, and thus provides a new strategy for designing highly efficient electrocatalysts.

18.
Adv Sci (Weinh) ; 11(11): e2306373, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38204202

RESUMO

Detecting pancreatic duct adenocarcinoma (PDAC) in its early stages and predicting late-stage patient prognosis undergoing chemotherapy is challenging. This work shows that the activation of specific oncogenes leads to elevated expression of mRNAs and their corresponding proteins in extracellular vesicles (EVs) circulating in blood. Utilizing an immune lipoplex nanoparticle (ILN) biochip assay, these findings demonstrate that glypican 1 (GPC1) mRNA expression in the exosomes-rich (Exo) EV subpopulation and GPC1 membrane protein (mProtein) expression in the microvesicles-rich (MV) EV subpopulation, particularly the tumor associated microvesicles (tMV), served as a viable biomarker for PDAC. A combined analysis effectively discriminated early-stage PDAC patients from benign pancreatic diseases and healthy donors in sizable clinical from multiple hospitals. Furthermore, among late-stage PDAC patients undergoing chemotherapy, lower GPC1 tMV-mProtein and Exo-mRNA expression before treatment correlated significantly with prolonged overall survival. These findings underscore the potential of vesicular GPC1 expression for early PDAC screenings and chemotherapy prognosis.


Assuntos
Carcinoma Ductal Pancreático , Vesículas Extracelulares , Neoplasias Pancreáticas , Humanos , Biomarcadores Tumorais/genética , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/genética , Vesículas Extracelulares/metabolismo , Glipicanas/genética , Glipicanas/metabolismo , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Prognóstico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
19.
Lab Chip ; 24(4): 819-831, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38235543

RESUMO

Localized micro/nano-electroporation (MEP/NEP) shows tremendous potential in cell transfection with high cell viability, precise dose control, and good transfection efficacy. In MEP/NEP, micro or nanochannels are used to tailor the electric field distribution. Cells are positioned tightly by a micron or nanochannel, and the cargoes are delivered into the cell via the channel by electrophoresis (EP). Such confined geometries with micro and nanochannels are also widely used in sorting, isolation, and condensing of biomolecules and cells. Theoretical studies on the electrokinetic phenomena in these applications have been well established. However, for MEP/NEP applications, electrokinetic phenomena and their impact on the cell transfection efficiency and cell survival rate have not been studied comprehensively. In this work, we reveal the coupling between electric field, Joule heating, electroosmosis (EO), and EP in MEP/NEP at different channel sizes. A microfluidic biochip is used to investigate the electrokinetic phenomena in MEP/NEP on a single cell level. Bubble formation is observed at a threshold voltage due to Joule heating. The bubble is pushed to the cargo side due to EO and grows at the outlet of the nanochannel. As the voltage increases, the cargo transport efficiency decreases due to more intense EO, particularly for plasmid DNAs (3.5 kbp) with a low EP mobility. An 'electroporation zone' is defined for NEP/MEP systems with different channel sizes to avoid bubble formation and excessive EO velocity that may reduce the cargo delivery efficiency.


Assuntos
Eletro-Osmose , Calefação , Eletroporação/métodos , Transfecção , Microfluídica
20.
Theranostics ; 14(1): 406-419, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38164148

RESUMO

Rationale: The composition and spatial structure of the lymphoma tumor microenvironment (TME) provide key pathological insights for tumor survival and growth, invasion and metastasis, and resistance to immunotherapy. However, the 3D lymphoma TME has not been well studied owing to the limitations of current imaging techniques. In this work, we take full advantage of a series of new techniques to enable the first 3D TME study in intact lymphoma tissue. Methods: Diverse cell subtypes in lymphoma tissues were tagged using a multiplex immunofluorescence labeling technique. To optically clarify the entire tissue, immunolabeling-enabled three-dimensional imaging of solvent-cleared organs (iDISCO+), clear, unobstructed brain imaging cocktails and computational analysis (CUBIC) and stabilization to harsh conditions via intramolecular epoxide linkages to prevent degradation (SHIELD) were comprehensively compared with the ultimate dimensional imaging of solvent-cleared organs (uDISCO) approach selected for clearing lymphoma tissues. A Bessel-beam light-sheet fluorescence microscope (B-LSFM) was developed to three-dimensionally image the clarified tissues at high speed and high resolution. A customized MATLAB program was used to quantify the number and colocalization of the cell subtypes based on the acquired multichannel 3D images. By combining these cutting-edge methods, we successfully carried out high-efficiency 3D visualization and high-content cellular analyses of the lymphoma TME. Results: Several antibodies, including CD3, CD8, CD20, CD68, CD163, CD14, CD15, FOXP3 and Ki67, were screened for labeling the TME in lymphoma tumors. The 3D imaging results of the TME from three types of lymphoma, reactive lymphocytic hyperplasia (RLN), diffuse large B-cell lymphoma (DLBCL), and angioimmunoblastic T-cell lymphoma (AITL), were quantitatively analyzed, and their cell number, localization, and spatial correlation were comprehensively revealed. Conclusion: We present an advanced imaging-based method for efficient 3D visualization and high-content cellular analysis of the lymphoma TME, rendering it a valuable tool for tumor pathological diagnosis and other clinical research.


Assuntos
Imageamento Tridimensional , Linfoma Difuso de Grandes Células B , Humanos , Imageamento Tridimensional/métodos , Microambiente Tumoral , Microscopia de Fluorescência/métodos , Imunofluorescência , Linfoma Difuso de Grandes Células B/patologia , Solventes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...