Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Res Vet Sci ; 138: 167-177, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34153557

RESUMO

Adhesion molecules play an important role in urinary calculus formation. The expressions of adhesion molecules in renal tubular has been reported in some animals. However, the role of adhesion molecules in the process of sheep urinary calculus formation is still unclear. The magnesium ammonium phosphate (MAP) is the main component of sheep urinary calculus. In this paper, the sheep renal tubular epithelial cells (RTECs) were isolated and treated with MAP, the expressions of osteopontin (OPN), intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and apoptosis-related indicators caspase-3, Bcl-2 and Bax in RTECs were observed, the viability of RTECs was detected by Cell Counting Kit-8 (CCK-8). The levels of superoxide dismutase (SOD) and malondialdehyde (MDA), and the expressions of inflammatory factors Interleukin-6 (IL-6), Interleukin-1 (IL-1), Interleukin-17 (IL-17) and tumor necrosis factor-α (TNF-α) were measured by enzyme-linked immunosorbent (ELISA). The histopathological observation of kidney in urolithiasis sheep was made. The results showed that MAP could reduce the viability and SOD activity, enhance the activity of MDA significantly and promote the expressions of IL-1, IL-6, IL-17 and TNF-α of RTECs. By western blot and qPCR methods, the expressions of ICAM-1, VCAM-1 and OPN increased in 48 h. In addition, the expression of caspase-3 increased significantly and the ratio of Bcl-2/Bax reduced with exposure to MAP. The renal tissue structure was seriously damaged, the RTECs in urolithiasis sheep were degenerative and necrotic.


Assuntos
Apoptose , Moléculas de Adesão Celular/metabolismo , Sobrevivência Celular , Citocinas/imunologia , Células Epiteliais/fisiologia , Estresse Oxidativo , Estruvita/metabolismo , Animais , Células Cultivadas , Molécula 1 de Adesão Intercelular/metabolismo , Rim/fisiologia , Osteopontina/metabolismo , Carneiro Doméstico/metabolismo , Carneiro Doméstico/urina , Cálculos Urinários/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo
2.
J Immunotoxicol ; 16(1): 140-148, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31290710

RESUMO

The present study aimed to investigate the protective effect of quercetin on polychlorinated biphenyls (PCB)-induced liver and embryo damage in pregnant Sprague-Dawley rats. Pregnant rats were divided into five groups, and then were orally gavaged daily with peanut oil (vehicle) or a commercial PCB mixture (Aroclor 1254) - with or without co-treatment with 75, 150, or 300 mg/kg quercetin - on gestation days (GD) 4-7. At GD 9, all rats were euthanized, and their blood, liver, and uterus were collected. Expressions of CYP450 mRNA and protein in liver, cytokines (IFNγ, IL-2, IL-4, and IL-6) and IFNγ/IL-4 ratios in liver and sera, liver morphology, and the status of implanted embryos were analyzed. The results showed Aroclor 1254 treatment alone caused hepatic cord damage (i.e. cell disorganization, swelling, decreased cytoplasm, vacuolization), and that quercetin co-treatment appeared to mitigate this damage. Similarly, levels of CYP1A1 and CYP2B1 mRNA in livers of Aroclor 1254-only-treated rats were significantly higher than those in rats co-treated with quercetin. Hepatic and sera levels of IFNγ, IL-2, IL-6, and IFNγ/IL-4 ratios, and the ratio of delayed-development embryos, all increased in Aroclor 1254-treated rats, but were relatively decreased as a result of quercetin co-treatments. IL-4 levels were decreased by Aroclor 1254 and tended to increase back to normal when quercetin was used. The results indicated that quercetin imparted a protective effect against Aroclor 1254-induced toxicity in pregnant rats, in part, by modulating levels of important pro-inflammatory cytokines and reducing induced CYP1A1 and CYP2B1 expression.


Assuntos
Antioxidantes/administração & dosagem , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Lesões Pré-Natais/prevenção & controle , Quercetina/administração & dosagem , Animais , Doença Hepática Induzida por Substâncias e Drogas/sangue , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP2B1/metabolismo , Citocinas/sangue , Citocinas/metabolismo , Modelos Animais de Doenças , Embrião de Mamíferos/efeitos dos fármacos , Embrião de Mamíferos/metabolismo , Feminino , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Gravidez , Lesões Pré-Natais/sangue , Lesões Pré-Natais/induzido quimicamente , Lesões Pré-Natais/metabolismo , Ratos , Ratos Sprague-Dawley , Resultado do Tratamento
3.
BMC Vet Res ; 15(1): 127, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31039823

RESUMO

BACKGROUND: Laminitis is considered as one of the most important causes of hoof lameness in dairy cows, which can lead to enormous economic losses. However, the etiology and pathogenesis of laminitis have not been clarified yet. Besides, it is of great significant to find alternative herbs for the prevention and treatment of dairy hooves to avoid the antibiotic abuse. In this study, the primary hoof dermal cells of dairy cows were isolated, the inflammatory model was induced by LPS, and treated with silymarin to find whether silymarin has protective effect on the inflammatory dermal cells. The viability of dermal cells, the levels of IL-1ß and TNF-α, the degree of p65 NF-κB and p38 MAPK phosphorylation, the expressions of CYP3A4 and CYP1A1 were measured. RESULTS: Hoof dermal cells of dairy cows were successfully isolated and cultured by tissue adherent culture method. Certain concentrations of LPS can increase the levels of IL-1ß and TNF-α, promote the phosphorylation of p65 NF-κB and p38 MAPK, and inhibit the mRNA expressions of CYP3A4 and CYP1A1. The optimal concentration for LPS to establish a hoof dermal cells inflammatory model was 10 µg/mL. Certain concentrations of silymarin can markedly decrease the secretions of IL-1ß and TNF-α, inhibit the phosphorylation of p65 NF-κB and p38 MAPK, and promote the mRNA expressions of CYP3A4 and CYP1A1 in LPS-induced dermal inflammatory model. CONCLUSIONS: LPS can be used for inducing the hoof dermal cells inflammatory model of dairy cows. Silymarin has protective effects on the LPS-induced inflammatory model.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Casco e Garras/citologia , Silimarina/farmacologia , Fator de Transcrição RelA/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Bovinos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Derme/citologia , Derme/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Casco e Garras/efeitos dos fármacos , Inflamação/induzido quimicamente , Interleucina-1beta/metabolismo , Lipopolissacarídeos/toxicidade , Fosforilação , Fator de Transcrição RelA/genética , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...