Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 434: 128817, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35427966

RESUMO

Antibiotics and antibiotic resistance genes (ARGs) have been recognized as emerging high-risk pollutants for human and animal health. This study systematically investigated the comprehensive effects of a typical antibiotic (sulfadimidine, SDM) in livestock and poultry breeding wastewater on the anammox process, with the aim of elucidating the intracellular and extracellular protective mechanisms of the anammox consortia to the antibiotic stress. Results revealed that the high-concentration SDM significantly reduced the specific anammox activity (SAA) by 37.8%. Changes in the abundance of Candidatus Kuenenia showed a similar trend with that of SAA, while other nitrogen-related microorganisms (e.g., Nitrosomonas and Nitrospira) contributed to the nitrogen removal especially during the inhibitory period. Resistance of the anammox consortia to SDM mainly depended on the protection of ARGs and EPS. Network analysis revealed the host range of eARGs was relatively larger than that of iARGs, and intI1 was closely associated with representative denitrifiers. In addition, metaproteomic analysis and molecular docking results indicated that abundant proteins in EPS could detain SDM in the extracellular matrix through forming complex via hydrogen bond. These findings provide a guidance for the stable operation of anammox process and ARGs transfer controlling.


Assuntos
Oxidação Anaeróbia da Amônia , Sulfametazina , Animais , Antibacterianos/farmacologia , Reatores Biológicos , Resistência Microbiana a Medicamentos/genética , Simulação de Acoplamento Molecular , Nitrogênio , Oxirredução , Águas Residuárias
2.
Water Res ; 202: 117453, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34320444

RESUMO

The anaerobic ammonium oxidation (anammox) process is regarded as a promising approach to treat antibiotic-containing wastewater. Therefore, it is urgent to elucidate the effects of various antibiotics on the anammox process. Moreover, the mechanism of extracellular polymeric substance (EPS) as protective barriers to relieve antibiotic stress remain unclear. Therefore, the single and combined effects of erythromycin (ETC) and sulfamethoxazole (SMZ), and interactions between EPS and antibiotics were investigated in this study. Based on a 228-day continuous flow experiment, high concentrations of ETC and SMZ had significant inhibitory effects on the nitrogen removal performance of the anammox process, with the abundances of corresponding antibiotic resistance genes (ARGs) increasing. In addition, the combined inhibitory effect of the two antibiotics on the anammox process was more significant and longer-lasting than that of the single. However, the anammox process was able to quickly recover from deterioration. The tolerance of anammox granules to the stress of low-concentration antibiotics was probably attributed to the increase in ARGs and secretion of EPS. Molecular docking simulation results showed that proteins in EPS could directly bind with SMZ and ETC at the sites of GLU-307, HYS-191, ASP-318 and THR-32, respectively. These findings improved our understanding of various antibiotic effects on the anammox process and the interaction mechanism between antibiotics and proteins in EPS.


Assuntos
Antibacterianos , Matriz Extracelular de Substâncias Poliméricas , Antibacterianos/farmacologia , Reatores Biológicos , Resistência Microbiana a Medicamentos/genética , Simulação de Acoplamento Molecular , Nitrogênio , Oxirredução , Esgotos , Águas Residuárias
3.
Bioresour Technol ; 333: 125186, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33892423

RESUMO

Two types of anaerobic ammonium oxidation (anammox) seed sludge were selected to evaluate their responses to copper nanoparticles (CuNPs) exposure. Antibiotic-exposed anammox granules (R1) were more likely to be inhibited by 5.0 mg L-1 CuNPs than the normal anammox granules (C1). The nitrogen removal efficiency (NRE) of C1 decreased by 9.00% after two weeks of exposure to CuNPs, whereas that of R1 decreased by 20.32%. Simultaneously, the abundance of Candidatus. Kuenenia decreased by 27.65% and 36.02% in C1 and R1 under CuNPs stress conditions, respectively. Generally, R1 was more susceptible to CuNPs than C1. The correlation analysis indicated that the horizontal transfer of antibiotic resistance genes and copA triggered by intI1 facilitated the generation of multiresistance in the anammox process. Moreover, the potential multiresistance mechanism of anammox bacteria was hypothesized based on previous results. The results will generate new ideas for the treatment of complex wastewater using the anammox process.


Assuntos
Compostos de Amônio , Nanopartículas , Anaerobiose , Antibacterianos/farmacologia , Reatores Biológicos , Cobre , Nitrogênio , Oxirredução , Esgotos
4.
J Environ Manage ; 286: 112267, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33667820

RESUMO

Antibiotic pollution is becoming increasingly severe due to its extensive use. The potential application of the anaerobic ammonium oxidation (anammox) process in the treatment of wastewater containing antibiotics has attracted much attention. As common antibiotics, spiramycin (SPM) and streptomycin (STM) are widely used to treat human and animal diseases. However, their combined effects on the anammox process remain unknown. Therefore, this study systematically evaluated the response of the anammox process to both antibiotics. The half maximal inhibitory concentrations of SPM and STM were determined. The continuous-flow anammox system could adapt to SPM and STM at low concentrations, while antibiotics at high concentrations exhibited inhibitory effects. When the concentrations reached 5 mg L-1 SPM and 50 mg L-1 STM, the nitrogen removal efficiency dramatically decreased and then rapidly recovered within 8 days. Correspondingly, the abundances of dominant bacteria and genes also changed with antibiotic concentrations. In general, the anammox process showed a stable performance and a high resistance to SPM and STM, suggesting that acclimatization by elevating the concentrations was beneficial for the anammox process to obtain resistance to different antibiotics with high concentrations. This study provides guidance for the stable operation of anammox-based biological treatment of antibiotics containing wastewater.


Assuntos
Compostos de Amônio , Macrolídeos , Aminoglicosídeos , Anaerobiose , Animais , Antibacterianos , Reatores Biológicos , Humanos , Nitrogênio , Oxirredução , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...