Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 628(Pt B): 777-787, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36029592

RESUMO

Rough structures have gained increasing attention since they are essential for surfaces with special wettability, which can be used for various applications. It is still a challenge to find a low-cost and simple way to fabricate rough surfaces despite extensive efforts. Herein, we report a facile strategy to fabricate self-roughened surfaces based on polarity-induced phase separation. The strategy relies on the migration of flexible chains of the nonpolar polysiloxane to airside, driven by surface tension and polarity difference with the polar crosslinker, which forms a self-roughened surface with numerous protrusions. It is worth noting that this strategy does not require strict control of procedures, since it is insensitive to environmental changes unlike other phase separation methods, as shown by the results of systematic studies on several key parameters. Modified fabrics and coatings exhibit excellent superhydrophobicity with a water contact angle higher than 160°. Moreover, due to the strong hydrogen bonds formed by the polar urea groups of the crosslinker with substrates, the abrasion resistance of the coating is significantly enhanced. It is believed that the proposed novel and facile strategy will be a promising candidate for industrial manufacturing.


Assuntos
Siloxanas , Água , Interações Hidrofóbicas e Hidrofílicas , Molhabilidade , Água/química , Ureia
2.
Nanoscale ; 11(35): 16690, 2019 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-31465062

RESUMO

Correction for 'Ionic-liquid-bifunctional wrapping of ultrafine SnO2 nanocrystals into N-doped graphene networks: high pseudocapacitive sodium storage and high-performance sodium-ion full cells' by Yan Yang et al., Nanoscale, 2019, 11, 14616-14624.

3.
Nanoscale ; 11(31): 14959-14960, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31353391

RESUMO

Correction for 'Ionic-liquid-bifunctional wrapping of ultrafine SnO2 nanocrystals into N-doped graphene networks: high pseudocapacitive sodium storage and high-performance sodium-ion full cells' by Yan Yang et al., Nanoscale, 2019, DOI: 10.1039/c9nr02542a.

4.
Nanoscale ; 11(31): 14616-14624, 2019 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-31259336

RESUMO

Sodium ion batteries are in great need of electrode materials with high specificity and rate capability being developed. The sluggish reaction kinetics of SnO2-based materials has impeded their applications as anodes of SIBs. Designing electrode materials with high pseudocapacitive contribution can increase the near-surface faradaic reaction, which helps to improve their kinetics and achieve high rate capability. Here, we designed a high-pseudocapacitance sodium storage anode SnO2/N-rGO by downsizing the particle size of SnO2 and constructing an N-doped graphene wrapped structure. The ultrafine structure of SnO2 ensures the high faradaic near-surface reaction, while the N-doped graphene matrix guarantees the superior electron and Na+ diffusion. Meanwhile, the wrapped N-doped graphene acts as a buffer layer to alleviate the volumetric changes of the active SnO2. The obtained ultrafine SnO2/N-graphene composite exhibits a high capacity of 607.6 mA h g-1 at 50 mA g-1 with an impressive rate capability (261.8 mA h g-1 at 2 A g-1) in Na+ half-cells. Furthermore, a good performance with a capacity of 133.3 mA h g-1 at 2.4 A g-1 in Na+ full-cells can also be achieved, which makes it a promising anode material for SIBs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...