Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Gene Med ; 25(2): e3462, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36346049

RESUMO

BACKGROUND: Diabetic foot ulcer (DFU) is a frequently diagnosed complication of diabetes, and remains a heathcare burden worldwide. However, the pathogenesis of DFU is still largely unclear. The objective of this study is to delineate the function and underlying mechanism of lncRNA antisense non coding RNA in the INK4 locus (ANRIL) in endothelial progenitor cells (EPCs) and DFU mice. METHODS: The DFU mouse model was established, and EPCs were subjected to high glucose (HG) treatment to mimic diabetes. qRT-PCR or western blot was employed to detected the expression of ANRIL, HIF1A, FUS and VEGFA. CCK-8 and Annexin V/PI staining were used to monitor cell proliferation and apoptosis. Wound healing, Transwell invasion and tube formation assays were conducted to assess cell migration, invasion and angiogenesis, respectively. The association between ANRIL and FUS was verified by RNA pull-down and RIP assays. Luciferase and ChIP assays were employed to investigate HIF1A-mediated transcriptional regulation of VEGFA and ANRIL. The histological alterations of DFU wound healing were observed by H&E and Masson staining. RESULTS: ANRIL was downregulated in peripheral blood samples of DFU patients, DFU mice and HG-treated EPCs. Mechanistically, ANRIL regulated HIFA mRNA stability via recruiting FUS. VEGFA and ANRIL were transcriptionally regulated by HIF1A. Functional experiments revealed that HG suppressed EPC proliferation, migration, invasion and tube formation, but promoted apoptosis via ANRIL/HIF1A axis. ANRIL accelerated DFU wound healing via modulating HIF1A expression in vivo. CONCLUSION: ANRIL accelerated wound healing in DFU via modulating HIF1A/VEGFA signaling in a FUS-dependent manner.


Assuntos
Diabetes Mellitus , Pé Diabético , MicroRNAs , RNA Longo não Codificante , Camundongos , Animais , Pé Diabético/genética , Pé Diabético/metabolismo , Pé Diabético/terapia , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Cicatrização/genética , Transdução de Sinais , Proliferação de Células/genética
2.
Cell Mol Biol Lett ; 24: 22, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30915129

RESUMO

Overcoming chemorestistance to 5-fluorouracil (5-FU) could offer a new treatment option for highly malignant colon cancer. In our study, differential microRNA expression profiling revealed that miR-214 is downregulated in 5-FU-resistant colon cancer cells compared to normal cells. In vitro, miR-214 could sensitize non-resistant colon cancer cells and 5-FU-resistant colon cancer cellsto 5-FU. Functionally, miR-214 inhibited cell clone formation and cell growth and enhanced 5-FU-inducing cell apoptosis and caspase-3 levels. MiR-214 targeted heat shock protein 27 (Hsp27), as confirmed via dual luciferase reporter assays and western blots. Hsp27 also sensitized HT-29 and LoVo to 5-FU by enhancing cell apoptosis. Overexpression of Hsp27 could block miR-214 with an effect on the sensitivity of colon cancer cells to 5-FU. In conclusion, miR-214 sensitizes colon cancer cells to 5-FU by targeting Hsp27, indicating a significant role for this miRNA in colon cancer chemotherapy.


Assuntos
Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Fluoruracila/farmacologia , Proteínas de Choque Térmico HSP27/metabolismo , MicroRNAs/metabolismo , Regiões 3' não Traduzidas/genética , Sequência de Bases , Caspase 3/metabolismo , Linhagem Celular Tumoral , Ativação Enzimática/efeitos dos fármacos , Proteínas de Choque Térmico , Humanos , MicroRNAs/genética , Chaperonas Moleculares , Ligação Proteica/efeitos dos fármacos
3.
Exp Ther Med ; 16(3): 1891-1899, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30186415

RESUMO

Angiogenesis refers to the formation of new blood vessels from existing blood vessels. The proliferation and migration of endothelial cells serves a key function in this process. Previous research has demonstrated that rapamycin suppresses endothelial cell proliferation and migration, as well as angiogenesis. However, the mechanism by which rapamycin inhibits the proliferation and migration of endothelial cells remains unclear. Long noncoding RNAs (lncRNAs) serve a key function in the regulation of endothelial cell function. The aim of the current study was to investigate whether lncRNA taurine upregulated 1 (lncRNATUG1) is involved in rapamycin-induced inhibition of proliferation and migration in human umbilical vein endothelial cells (HUVECs). Reverse transcription quantitative polymerase chain reaction results indicated that the expression of lncRNATUG1 was upregulated in HUVECs that had been cultured with rapamycin. Subsequently, HUVECs were transfected with siRNAs and CCK-8 assays were performed to detect cell proliferation; additionally, flow cytometry was employed to detect cell apoptosis, and wound healing assays were performed to investigate cell migration. The results demonstrated that rapamycin suppressed the proliferation and migration of HUVECs, and promoted the apoptosis of HUVECs. In addition, rapamycin downregulated the expression of vascular endothelial growth factor (VEGF), matrix metalloproteinase (MMP)-2 and MMP-9 in HUVECs. However, silencing of lncRNATUG1 was revealed to attenuate rapamycin-induced inhibition of cellular proliferation and migration of HUVECs, as well as upregulating the expression of VEGF, MMP2 and MMP-9. These results suggested that lncRNATUG1 regulates rapamycin-induced inhibition of endothelial cell proliferation and migration. Therefore, lncRNATUG1 may serve a key function in rapamycin-induced inhibition of endothelial cell proliferation and migration.

4.
Mol Med Rep ; 15(4): 1981-1988, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28260032

RESUMO

Slit homolog 2 (Slit2) is distributed in various tissues and participates in numerous cellular processes; however, the role of Slit2 in the regulation of angiogenesis remains controversial, since it has previously been reported to exert proangiogenic and antiangiogenic activities. The present study aimed to investigate the effects of Slit2 on vascular endothelial cell proliferation and migration in vitro, and to reveal the possible underlying signaling pathway. Aortic endothelial cells were isolated from Sprague Dawley rats and cultured. Cell proliferation assay, cell migration assay, immunocytochemistry and small interfering RNA transfection were subsequently performed. The results demonstrated that exogenous Slit2 administration markedly suppressed TNF­α­induced endothelial cell proliferation and migration in vitro. In addition, TNF­α application upregulated the protein expression levels of vascular endothelial growth factor (VEGF) and Notch in RAECs, whereas Slit2 administration downregulated VEGF and Notch expression in RAECs cultured in TNF­α conditioned medium. Further studies indicated that knockdown of VEGF suppressed the effects of TNF­α on the induction of RAEC proliferation and migration. VEGF knockdown­induced inhibition of RAEC proliferation and migration in TNF­α conditioned medium was also achieved without Slit2 administration. Furthermore, VEGF knockdown markedly decreased Notch1 and Notch2 expression. These results indicated that Slit2 suppresses TNF­α­induced vascular endothelial cell proliferation and migration in vitro by inhibiting the VEGF­Notch signaling pathway. Therefore, Slit2 may inhibit the proliferation and migration of endothelial cells during vascular development.


Assuntos
Movimento Celular , Proliferação de Células , Células Endoteliais/citologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Aorta/citologia , Células Cultivadas , Células Endoteliais/metabolismo , Ratos Sprague-Dawley , Receptores Notch/genética , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima
5.
Oncol Lett ; 12(4): 2789-2795, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27698859

RESUMO

Iodine-125 (125I) seed implantation has been widely used for the treatment of unresectable advanced tumors. However, the molecular mechanisms underlying the tumor-suppressive effects of 125I irradiation have not been fully elucidated. The present study demonstrated that 125I irradiation suppresses cell viability and inhibits cell invasiveness of gastric cancer KATO-III and MKN45 cells. Further mechanistic analysis suggested the involvement of microRNA (miR)-181c in the inhibitory effects induced by 125I irradiation. Methylated DNA immunoprecipitation coupled with quantitative-polymerase chain reaction demonstrated that treatment with 125I irradiation, at the dose of 4 Gy, induced promoter demethylation of the miR-181c gene in KATO-III and MKN45 cells. Following irradiation, the expression of miR-181c was significantly increased, which may be attributed to the demethylation caused by 125I irradiation. In addition, upregulation of miR-181c by administration of miR-181c mimics decreased cell invasion, suggesting the role of miR-181c as a tumor suppressor. More importantly, the tumor-suppressive effects of 125I irradiation were significantly compromised by the introduction of miR-181c inhibitors. Overall, these results reveal that 125I irradiation inhibits invasiveness of gastric cancer cells by reactivating miR-181c at the epigenetic level, thereby providing important molecular evidence for the anticancer effects of 125I irradiation.

6.
J Exp Clin Cancer Res ; 31: 61, 2012 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-22827957

RESUMO

BACKGROUND: Iodine 125 (125I) seed irradiation can be used as an important supplementary treatment for unresectable advanced gastric cancer. Here, we aim to comprehensively elucidate the biological effects induced by 125I seed irradiation in human gastric cancer xenograft model by using global expression and DNA methylation analyses. METHODS: The 48 mice bearing NCI-N87 gastric cancer xenografts were randomly separated into 2 groups: sham seeds (O mCi) were implanted into the control group (n = 24); 125 l seeds (0.9 mCi) were implanted into the treatment group (n = 24). The mitotic index and apoptotic index were evaluated by quantitative morphometric analysis of the expression of proliferating cell nuclear antigen (PCNA) and in situ terminal transferase-mediated fluorescein deoxy- UTP nick end labeling (TUNEL), respectively. Global gene expression changes induced by 125I seed irradiation were analyzed by using Nimblegen Human gene expression array. DNA methylation profile in the tumors from control group was investigated with methylated DNA immunoprecipitation (MeDIP) and Nimblegen CpG promoter microarrays. The changes in the methylation status of selected genes were further investigated by using MeDIP-PCR. RESULTS: 125I seed irradiation suppresses the growth of gastric cancer xenografts in nude mice. PCNA staining and tissue TUNEL assays showed that both inhibition of cell proliferation and induction of apoptosis contribute to the 125I-induced tumor suppression in nude mouse model. Gene expression profiles revealed that the expression levels of several hundred genes, many of which are associated with apoptosis or cell cycle arrest, including BMF, MAPK8, BNIP3, RFWD3, CDKN2B and WNT9A, were upregulated following 125I seed irradiation. Furthermore, the up-regulation of some of these genes, such as BNIP3 and WNT9A, was found to be associated with irradiation-induced DNA demethylation. CONCLUSIONS: This study revealed that 125I seed irradiation could significantly induce the up-regulation of apoptosis- and cell cycle-related genes in human gastric cancer xenografts. And some of the up-regulation might be attributed to 125I-irradiation induced demethylation in gene promoter regions. Collectively, these findings provided evidence for the efficacy of this modality for the treatment of gastric cancer.


Assuntos
Proliferação de Células/efeitos da radiação , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Radioisótopos do Iodo , Neoplasias Gástricas , Animais , Apoptose/genética , Apoptose/efeitos da radiação , Pontos de Checagem do Ciclo Celular/genética , Pontos de Checagem do Ciclo Celular/efeitos da radiação , Metilação de DNA/efeitos da radiação , Humanos , Camundongos , Camundongos Nus , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/radioterapia , Transplante Heterólogo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...