Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(10): 7407-7416, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36846986

RESUMO

Due to the confined mass transfer capability in microchannels, void defects are easily formed in electroformed microcolumn arrays with a high depth/width ratio, which seriously affects the life and performance of micro-devices. The width of the microchannel constantly decreases during electrodeposition, which further deteriorates the mass transfer capability inside the microchannel at the cathode. In the traditional micro-electroforming simulation model, the change of the ion diffusion coefficient is always ignored, making it difficult to accurately predict the size of void defects prior to electroforming experiments. In this study, nickel ion diffusion coefficients in microchannels are tested based on the electrochemical experiments. The measured diffusion coefficients decrease from 4.74 × 10-9 to 1.27 × 10-9 m2 s-1, corresponding to microchannels with a width from 120 to 24 µm. The simulation models of both constant and dynamic diffusion coefficients are established, and the corresponding simulation results are compared with the void defects obtained using micro-electroforming experiments. The results show that when the cathode current densities are 1, 2 and 4 A dm-2, the size of void defects obtained with the dynamic diffusion coefficient model is closer to the experimental results. In the dynamic diffusion coefficient model, the local current density and ion concentration distribution proves to be more inhomogeneous, leading to a big difference in the deposition rate of nickel between the bottom and the opening of a microchannel, and consequently a larger void defect in the electroformed microcolumn arrays. In brief, the ion diffusion coefficient inside microchannels with a different width is tested experimentally, which provides a reference for developing reliable micro-electroforming simulation models.

2.
Micromachines (Basel) ; 11(9)2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32878158

RESUMO

It is essential to control concentration gradients at specific locations for many biochemical experiments. This paper proposes a tunable concentration gradient generator actuated by acoustically oscillating bubbles trapped in the bubble channels using a controllable position based on the gas permeability of polydimethylsiloxane (PDMS). The gradient generator consists of a glass substrate, a PDMS chip, and a piezoelectric transducer. When the trapped bubbles are activated by acoustic waves, the solution near the gas-liquid interface is mixed. The volume of the bubbles and the position of the gas-liquid interface are regulated through the permeability of the PDMS wall. The tunable concentration gradient can be realized by changing the numbers and positions of the bubbles that enable the mixing of fluids in the main channel, and the amplitude of the applied voltage. This new device is easy to fabricate, responsive, and biocompatible, and therefore has great application prospects. In particular, it is suitable for biological research with high requirements for temporal controllability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...