Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Insights Imaging ; 14(1): 214, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38072865

RESUMO

OBJECTIVES: We aimed to develop a combined model based on clinical and radiomic features to classify fracture age. METHODS: We included 1219 rib fractures from 239 patients from our center between March 2016 and September 2022. We created an external dataset using 120 rib fractures from 32 patients from another center between October 2019 and August 2023. According to tasks (fracture age between < 3 and ≥ 3 weeks, 3-12, and > 12 weeks), the internal dataset was randomly divided into training and internal test sets. A radiomic model was built using radiomic features. A combined model was constructed using clinical features and radiomic signatures by multivariate logistic regression, visualized as a nomogram. Internal and external test sets were used to validate model performance. RESULTS: For classifying fracture age between < 3 and ≥ 3 weeks, the combined model had higher areas under the curve (AUCs) than the radiomic model in the training set (0.915 vs 0.900, p = 0.009), internal test (0.897 vs 0.854, p < 0.001), and external test sets (0.881 vs 0.811, p = 0.003). For classifying fracture age between 3-12 and > 12 weeks, the combined model had higher AUCs than the radiomic model in the training model (0.848 vs 0.837, p = 0.12) and internal test sets (0.818 vs 0.793, p < 0.003). In the external test set, the AUC of the nomogram-assisted radiologist was 0.966. CONCLUSION: The combined radiomic and clinical model showed good performance and has the potential to assist in the classification of rib fracture age. This will be beneficial for clinical practice and forensic decision-making. CRITICAL RELEVANCE STATEMENT: This study describes the development of a combined radiomic and clinical model with good performance in the classification of the age of rib fractures, with potential clinical and forensic applications. KEY POINTS: • Complex factors make it difficult to determine the age of a fracture. • Our model based on radiomic features performed well in classifying fracture age. • Associating the radiomic features with clinical features improved the model's performance.

2.
Bioengineering (Basel) ; 10(12)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38135930

RESUMO

We aimed to compare the performance and interobserver agreement of radiologists manually segmenting images or those assisted by automatic segmentation. We further aimed to reduce interobserver variability and improve the consistency of radiomics features. This retrospective study included 327 patients diagnosed with prostate cancer from September 2016 to June 2018; images from 228 patients were used for automatic segmentation construction, and images from the remaining 99 were used for testing. First, four radiologists with varying experience levels retrospectively segmented 99 axial prostate images manually using T2-weighted fat-suppressed magnetic resonance imaging. Automatic segmentation was performed after 2 weeks. The Pyradiomics software package v3.1.0 was used to extract the texture features. The Dice coefficient and intraclass correlation coefficient (ICC) were used to evaluate segmentation performance and the interobserver consistency of prostate radiomics. The Wilcoxon rank sum test was used to compare the paired samples, with the significance level set at p < 0.05. The Dice coefficient was used to accurately measure the spatial overlap of manually delineated images. In all the 99 prostate segmentation result columns, the manual and automatic segmentation results of the senior group were significantly better than those of the junior group (p < 0.05). Automatic segmentation was more consistent than manual segmentation (p < 0.05), and the average ICC reached >0.85. The automatic segmentation annotation performance of junior radiologists was similar to that of senior radiologists performing manual segmentation. The ICC of radiomics features increased to excellent consistency (0.925 [0.888~0.950]). Automatic segmentation annotation provided better results than manual segmentation by radiologists. Our findings indicate that automatic segmentation annotation helps reduce variability in the perception and interpretation between radiologists with different experience levels and ensures the stability of radiomics features.

3.
Biology (Basel) ; 12(3)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36979029

RESUMO

We aimed to detect acute aortic syndromes (AAS) on non-contrast computed tomography (NCCT) images using a radiomics-based machine learning model. A total of 325 patients who underwent aortic CT angiography (CTA) were enrolled retrospectively from 2 medical centers in China to form the internal cohort (230 patients, 60 patients with AAS) and the external testing cohort (95 patients with AAS). The internal cohort was divided into the training cohort (n = 135), validation cohort (n = 49), and internal testing cohort (n = 46). The aortic mask was manually delineated on NCCT by a radiologist. Least Absolute Shrinkage and Selection Operator regression (LASSO) was used to filter out nine feature parameters; the Support Vector Machine (SVM) model showed the best performance. In the training and validation cohorts, the SVM model had an area under the curve (AUC) of 0.993 (95% CI, 0.965-1); accuracy (ACC), 0.946 (95% CI, 0.877-1); sensitivity, 0.9 (95% CI, 0.696-1); and specificity, 0.964 (95% CI, 0.903-1). In the internal testing cohort, the SVM model had an AUC of 0.997 (95% CI, 0.992-1); ACC, 0.957 (95% CI, 0.945-0.988); sensitivity, 0.889 (95% CI, 0.888-0.889); and specificity, 0.973 (95% CI, 0.959-1). In the external testing cohort, the ACC was 0.991 (95% CI, 0.937-1). This model can detect AAS on NCCT, reducing misdiagnosis and improving examinations and prognosis.

4.
Front Oncol ; 13: 975216, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36816925

RESUMO

Introduction: Gadoxetic acid-enhanced magnetic resonance imaging (MRI) contributes to evaluating the prognosis of small hepatocellular carcinoma (sHCC) following treatment. We have investigated the potential role of gadoxetic acid-enhanced MRI based on LI-RADS (Liver Imaging Reporting and Data System) v2018 imaging features in the prognosis prediction of patients with sHCC treated with radiofrequency ablation (RFA) as the first-line treatment and formulated a predictive nomogram. Methods: A total of 204 patients with sHCC who all received RFA as the first-line therapy were enrolled. All patients had undergone gadoxetic acid-enhanced MRI examinations before RFA. Uni- and multivariable analyses for RFS were assessing using a Cox proportional hazards model. A novel nomogram was further constructed for predicting RFS. The clinical capacity of the model was validated according to calibration curves, the concordance index (C-index), and decision curve analyses. Results: Alpha fetoprotein (AFP) > 100 ng/ml (HR, 2.006; 95% CI, 1.111-3.621; P = 0.021), rim arterial phase hyperenhancement (APHE) (HR, 2.751; 95% CI, 1.511-5.011; P = 0.001), and targetoid restriction on diffusion-weighted imaging (DWI) (HR, 3.289; 95% CI, 1.832-5.906; P < 0.001) were considered as the independent risk features for recurrence in patients with sHCC treated with RFA. The calibration curves and C-indexes (C-index values of 0.758 and 0.807) showed the superior predictive performance of the integrated nomogram in both the training and validation groups. Discussion: The gadoxetic acid-enhanced MRI features based on LI-RADS v2018, including rim APHE, targetoid restriction on DWI, and the AFP level, are the independent risk factors of recurrence in patients with sHCC treated with RFA as the first-line therapy. The predictive clinical-radiological nomogram model was constructed for clinicians to develop individualized treatment and surveillance strategies.

5.
Front Oncol ; 12: 927974, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36465372

RESUMO

Purpose: This study aims to explore the value of the delta-radiomics (DelRADx) model in predicting the invasiveness of lung adenocarcinoma manifesting as radiological part-solid nodules (PSNs). Methods: A total of 299 PSNs histopathologically confirmed as lung adenocarcinoma (training set, n = 209; validation set, n = 90) in our hospital were retrospectively analyzed from January 2017 to December 2021. All patients underwent diagnostic noncontrast-enhanced CT (NCECT) and contrast-enhanced CT (CECT) before surgery. After image preprocessing and ROI segmentation, 740 radiomic features were extracted from NCECT and CECT, respectively, resulting in 740 DelRADx. A DelRADx model was constructed using the least absolute shrinkage and selection operator logistic (LASSO-logistic) algorithm based on the training cohort. The conventional radiomics model based on NCECT was also constructed following the same process for comparison purposes. The prediction performance was assessed using area under the ROC curve (AUC). To provide an easy-to-use tool, a radiomics-based integrated nomogram was constructed and evaluated by integrated discrimination increment (IDI), calibration curves, decision curve analysis (DCA), and clinical impact plot. Results: The DelRADx signature, which consisted of nine robust selected features, showed significant differences between the AIS/MIA group and IAC group (p < 0.05) in both training and validation sets. The DelRADx signature showed a significantly higher AUC (0.902) compared to the conventional radiomics model based on NCECT (AUC = 0.856) in the validation set. The IDI was significant at 0.0769 for the integrated nomogram compared with the DelRADx signature. The calibration curve of the integrated nomogram demonstrated favorable agreement both in the training set and validation set with a mean absolute error of 0.001 and 0.019, respectively. Decision curve analysis and clinical impact plot indicated that if the threshold probability was within 90%, the integrated nomogram showed a high clinical application value. Conclusion: The DelRADx method has the potential to assist doctors in predicting the invasiveness for patients with PSNs. The integrated nomogram incorporating the DelRADx signature with the radiographic features could facilitate the performance and serve as an alternative way for determining management.

6.
Polymers (Basel) ; 14(21)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36365766

RESUMO

Bladder cancer and prostate cancer are the most common malignant tumors of the genitourinary system. Conventional strategies still face great challenges of high recurrence rate and severe trauma. Therefore, minimally invasive photothermal therapy (PTT) has been extensively explored to address these challenges. Herein, fluorescent Au nanoparticles (NPs) were first prepared using glutathione as template, which were then capped with SiO2 shell to improve the biocompatibility. Next, Au nanoclusters were deposited on the NPs surface to obtain Au@SiO2@Au NPs for photothermal conversion. The gaps between Au nanoparticles on their surface could enhance their photothermal conversion efficiency. Finally, hyaluronic acid (HA), which targets cancer cells overexpressing CD44 receptors, was attached on the NPs surface via 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) chemistry to improve the accumulation of NPs in tumor tissues. Photothermal experiments showed that NPs with an average size of 37.5 nm have a high photothermal conversion efficiency (47.6%) and excellent photostability, thus exhibiting potential application as a PTT agent. The temperature of the NPs (100 µg·mL-1) could rapidly increase to 38.5 °C within 200 s and reach the peak of 57.6 °C with the laser power density of 1.5 W·cm-2 and irradiation time of 600 s. In vivo and in vitro PTT experiments showed that the NPs have high biocompatibility and excellent targeted photothermal ablation capability of cancer cells. Both bladder and prostate tumors disappeared at 15 and 18 d post-treatment with HA-Au@SiO2@Au NPs, respectively, and did not recur. In summary, HA-Au@SiO2@Au NPs can be used a powerful PTT agent for minimally invasive treatment of genitourinary tumors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...