Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 30(34): e202400046, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38619364

RESUMO

Förster resonance energy transfer (FRET) has been widely applied in fluorescence imaging, sensing and so on, while developing useful strategy of boosting FRET efficiency becomes a key issue that limits the application. Except optimizing spectral properties, promoting orientation factor (κ2) has been well discussed but rarely utilized for boosting FRET. Herein, we constructed binary nano-assembling of two thermally activated delayed fluorescence (TADF) emitters (2CzPN and DMAC-DPS) with J-type aggregate of cyanine dye (C8S4) as doping films by taking advantage of their electrostatic interactions. Time-resolved spectroscopic measurements indicated that 2CzPN/Cy-J films exhibit an order of magnitude higher kFRET than DMAC-DPS/Cy-J films. Further quantitative analysing on kFRET and kDET indicated higher orientation factor (κ2) in 2CzPN/Cy-J films play a key role for achieving fast kFRET, which was subsequently confirmed by anisotropic measurements. Corresponding DFT/TDDFT calculation revealed strong "two-point" electrostatic anchoring in 2CzPN/Cy-J films that is responsible for highly orientated transitions. We provide a new strategy for boosting FRET in nano-assemblies, which might be inspired for designing FRET-based devices of sensing, imaging and information encryption.

2.
Bioorg Chem ; 75: 173-180, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28957752

RESUMO

Isolated by the cellulolytic enzyme lignin (CEL) process, water-alcohol (1:1, v/v) was introduced as co-solvent in the process of the hydrothermal treatment. The modification parameters such as reaction temperature and time, solid-to-liquid ratio, and catalysts (NaOH and NaOAlO2) have been investigated in terms of the specific lignin properties, such as the phenolic hydroxyl content (OHphen), DPPH free radical scavenging rate, and formaldehyde value. The CELs were also characterized by GPC, FT-IR and 1H NMR spectroscopy, and Py-GC/MS. The key data are under optimal lignin modification conditions (solid-to-liquid ratio of 1:10 (w/v) and a temperature of 250°C for 60min) are: OHphen content: 2.50mmol/g; half maximal inhibitory concentration (IC50) towards DPPH free radicals: 88.2mg/L; formaldehyde value: 446.9g/kg). Both base catalysts decrease the residue rate, but phenol reactivities of the products were also detracted. Py-GC/MS results revealed that modified lignin had a higher phenolic composition than the CEL did, especially the modified lignin without catalyst (ML), which represented 74.51% phenolic content.


Assuntos
Lignina/metabolismo , Acetilação , Álcoois/química , Catálise , Sequestradores de Radicais Livres/química , Cromatografia Gasosa-Espectrometria de Massas , Espectroscopia de Ressonância Magnética , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Água/química
3.
Langmuir ; 33(23): 5786-5795, 2017 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-28514158

RESUMO

Carbon dots, which are less than 10 nm in diameter, have been widely investigated because of their unique luminescence properties and potential for use in bioimaging. In the present work, natural carbon dots (L-CDs) were obtained by molecular aggregation, using ethanol-extracted cellulolytic enzyme lignin. The whole process for the preparation of L-CDs was green and simple to operate and did not use toxic chemical reagents or harsh conditions. The newly prepared L-CDs emitted multicolor photoluminescence following one- and two-photon excitation. The L-CDs also showed good cellular biocompatibility, which is crucial for biological applications. One- and two-photon cell-imaging studies demonstrated the potential of L-CDs for bioimaging.


Assuntos
Carbono/química , Linhagem Celular Tumoral , Celulose , Humanos , Lignina , Luminescência , Imagem Molecular , Pontos Quânticos
4.
Int J Biol Macromol ; 93(Pt A): 1279-1284, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27693747

RESUMO

In this study, we have explored various ultrasound treatment conditions for structural modification of enzymatic hydrolysis lignin (EHL) for enhanced chemical reactivity. The key structural modifications were characterized by using a combination of analytical methods, including, Fourier Transform-Infrared spectroscopy (FTIR), Proton Nuclear Magnetic Resonance (1H NMR), Gel permeation chromatography (GPC), X-ray photoelectron spectroscopy (XPS), and Folin-Ciocalteu (F-C) method. Chemical reactivity of the modified EHL samples was determined by both 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity and their reactivity towards formaldehyde. It was observed that the modified EHL had a higher phenolic hydroxyl group content, a lower molecular weight, a higher reactivity towards formaldehyde, and a greater antioxidant property. The higher reactivity demonstrated by the samples after treatment suggesting that ultrasound is a promising method for modifying enzymatic hydrolysis lignin for value-added applications.


Assuntos
Sequestradores de Radicais Livres/química , Hidrolases/metabolismo , Lignina/química , Ondas Ultrassônicas , Formaldeído/química , Sequestradores de Radicais Livres/metabolismo , Concentração de Íons de Hidrogênio , Hidrólise , Lignina/metabolismo , Peso Molecular , Fenóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...