Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 15309, 2024 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961197

RESUMO

Axillary bud is an important aspect of plant morphology, contributing to the final tobacco yield. However, the mechanisms of axillary bud development in tobacco remain largely unknown. To investigate this aspect of tobacco biology, the metabolome and proteome of the axillary buds before and after topping were compared. A total of 569 metabolites were differentially abundant before and 1, 3, and 5 days after topping. KEGG analyses further revealed that the axillary bud was characterized by a striking enrichment of metabolites involved in flavonoid metabolism, suggesting a strong flavonoid biosynthesis activity in the tobacco axillary bud after topping. Additionally, 9035 differentially expressed proteins (DEPs) were identified before and 1, 3, and 5 days after topping. Subsequent GO and KEGG analyses revealed that the DEPs in the axillary bud were enriched in oxidative stress, hormone signal transduction, MAPK signaling pathway, and starch and sucrose metabolism. The integrated proteome and metabolome analysis revealed that the indole-3-acetic acid (IAA) alteration in buds control dormancy release and sustained growth of axillary bud by regulating proteins involved in carbohydrate metabolism, amino acid metabolism, and lipid metabolism. Notably, the proteins related to reactive oxygen species (ROS) scavenging and flavonoid biosynthesis were strongly negatively correlated with IAA content. These findings shed light on a critical role of IAA alteration in regulating axillary bud outgrowth, and implied a potential crosstalk among IAA alteration, ROS homeostasis, and flavonoid biosynthesis in tobacco axillary bud under topping stress, which could improve our understanding of the IAA alteration in axillary bud as an important regulator of axillary bud development.


Assuntos
Ácidos Indolacéticos , Metaboloma , Nicotiana , Proteínas de Plantas , Proteoma , Ácidos Indolacéticos/metabolismo , Nicotiana/metabolismo , Nicotiana/crescimento & desenvolvimento , Proteoma/metabolismo , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Flavonoides/metabolismo , Flores/metabolismo , Flores/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismo
2.
Polymers (Basel) ; 14(4)2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-35215728

RESUMO

The present investigation utilizes tobacco stalks flour and magnesium oxysulfate whiskers as fillers to enhancers the recycle polypropylene through melt blending and injection molding. Studied the microscopic morphology, mechanical, thermal, and antibacterial properties of recycled polypropylene (rPP) based composites with different weight ratios of tobacco stalks flour (TSF) and magnesium oxysulfate whiskers (MOSw). Composites' morphological studies indicated that tobacco stalks flour, and recycled polypropylene has good adhesion, improving composites' mechanical properties. The addition of TSF did not significantly change the tensile strength of rPP, but it can effectively increase the flexural strength and flexural modulus. Compared with rPP, adding 30 wt% tobacco stalks flour to rPP can increase the flexural strength by about 32.74%. Meanwhile, the addition of magnesium oxysulfate whiskers further improves the material's tensile strength. An increase in tobacco stalks flour content in the rPP enhances the crystallization temperature and degree of crystallinity of the polymer. In addition, attributed to the existence of tobacco stalks flour hydrophilic and antibacterial ability, the water absorption of the hybrid composites was increased and obtained antibacterial ability. Hence, this study provides a new development idea for tobacco stalks r recycling and applications.

3.
Materials (Basel) ; 15(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35160869

RESUMO

A large amount of biomass straw waste is generated every year in the world, which can cause serious environmental pollution and resource waste if disposed of improperly. At present, biomass-derived porous carbon materials prepared from biomass waste as a carbon source have garnered attention due to their renewability, huge reserves, low cost, and environmental benevolence. In this work, high-performance carbon materials were prepared via a one-step carbonization-activation method and ball milling, with waste tobacco straw as precursor and nano-ZnO as template and activator. The specific surface area and porous structure of biomass-derived carbon could be controlled by carbonization temperature, which is closely related to the electrochemical performances of the carbon material. It was found that, when the carbonization temperature was 800 °C, the biochar possesses maximum specific surface area (1293.2 m2·g-1) and exhibits high capacitance of 220.7 F·g-1, at 1 A·g-1 current density in a three-electrode configuration with 6 M KOH aqueous solution. The capacitance retention maintained about 94.83% at 5 A·g-1 after 3000 cycles. This work proves the porous biochar derived from tobacco straws has a great potential prospect in the field of supercapacitors.

4.
Front Plant Sci ; 12: 767882, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34970284

RESUMO

Bacterial wilt (BW) caused by Ralstonia solanacearum (R. solanacearum), is a vascular disease affecting diverse solanaceous crops and causing tremendous damage to crop production. However, our knowledge of the mechanism underlying its resistance or susceptibility is very limited. In this study, we characterized the physiological differences and compared the defense-related transcriptomes of two tobacco varieties, 4411-3 (highly resistant, HR) and K326 (moderately resistant, MR), after R. solanacearum infection at 0, 10, and 17 days after inoculation (dpi). A total of 3967 differentially expressed genes (DEGs) were identified between the HR and MR genotypes under mock condition at three time points, including1395 up-regulated genes in the HR genotype and 2640 up-regulated genes in the MR genotype. Also, 6,233 and 21,541 DEGs were induced in the HR and MR genotypes after R. solanacearum infection, respectively. Furthermore, GO and KEGG analyses revealed that DEGs in the HR genotype were related to the cell wall, starch and sucrose metabolism, glutathione metabolism, ABC transporters, endocytosis, glycerolipid metabolism, and glycerophospholipid metabolism. The defense-related genes generally showed genotype-specific regulation and expression differences after R. solanacearum infection. In addition, genes related to auxin and ABA were dramatically up-regulated in the HR genotype. The contents of auxin and ABA in the MR genotype were significantly higher than those in the HR genotype after R. solanacearum infection, providing insight into the defense mechanisms of tobacco. Altogether, these results clarify the physiological and transcriptional regulation of R. solanacearum resistance infection in tobacco, and improve our understanding of the molecular mechanism underlying the plant-pathogen interaction.

5.
Materials (Basel) ; 14(7)2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33807316

RESUMO

Large quantities of tobacco stalks residues are generated and discarded as crop waste or combusted directly every year. Thus, we need to find an appropriate way to dispose of this type of waste and recycle it. The conversion of biomass waste into electrode materials for supercapacitors is entirely in line with the concept of sustainability and green. In this paper, tobacco-stalk-based, porous activated carbon (TC) was successfully synthesized by high-temperature and high-pressure hydrothermal pre-carbonization and KOH activation. The synthesized TC had a high pore volume and a large surface area of 1875.5 m2 g-1, in which there were many mesopores and interconnected micro-/macropores. The electrochemical test demonstrated that TC-1 could reach a high specific capacitance of up to 356.4 F g-1 at a current density of 0.5 A g-1, which was carried in 6M KOH. Additionally, a symmetrical supercapacitor device was fabricated by using TC-1 as the electrode, which delivered a high energy density up to 10.4 Wh kg-1 at a power density of 300 W kg-1, and excellent long-term cycling stability (92.8% of the initial capacitance retention rate after 5000 cycles). Therefore, TC-1 is considered to be a promising candidate for high-performance supercapacitor electrode materials and is a good choice for converting tobacco biomass waste into a resource.

6.
Polymers (Basel) ; 12(9)2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32878229

RESUMO

The recycling of macromolecular biowastes has been a problem for the agriculture industry. In this study, a novel N, S-codoped activated carbon material with an ultrahigh specific area was produced for the application of a supercapacitor electrode, using tobacco stalk biowastes as the carbon source, KOH as the activating agents and thiourea as the doping agent. Tobacco stalk is mainly composed of cellulose, but also contains many small molecules and inorganic salts. KOH activation resulted in many mesopores, giving the tobacco stem-activated carbon a large specific surface area and double-layer capacitance. The specific surface area of the samples reached up to 3733 m2·g-1, while the maximum specific capacitance of the samples obtained was up to 281.3 F·g-1 in the 3-electrode tests (1 A·g-1). The doping of N and S elements raised the specific capacitance significantly, which could be increased to a value as high as 422.5 F·g-1 at a current density of 1 A·g-1 in the 3-electrode tests, but N, S-codoping also led to instability. The results of this article prove that tobacco stalks could be efficiently reused in the field of supercapacitors.

7.
Theor Appl Genet ; 131(3): 555-568, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29159422

RESUMO

KEY MESSAGE: Fifteen stable QTLs were identified using a high-density soybean genetic map across multiple environments. One major QTL, qIF5-1, contributing to total isoflavone content explained phenotypic variance 49.38, 43.27, 46.59, 45.15 and 52.50%, respectively. Soybeans (Glycine max L.) are a major source of dietary isoflavones. To identify novel quantitative trait loci (QTL) underlying isoflavone content, and to improve the accuracy of marker-assisted breeding in soybean, a valuable mapping population comprised of 196 F7:8-10 recombinant inbred lines (RILs, Huachun 2 × Wayao) was utilized to evaluate individual and total isoflavone content in plants grown in four different environments in Guangdong. A high-density genetic linkage map containing 3469 recombination bin markers based on 0.2 × restriction site-associated DNA tag sequencing (RAD-seq) technology was used to finely map QTLs for both individual and total isoflavone contents. Correlation analyses showed that total isoflavone content, and that of five individual isoflavone, was significantly correlated across the four environments. Based on the high-density genetic linkage map, a total of 15 stable quantitative trait loci (QTLs) associated with isoflavone content across multiple environments were mapped onto chromosomes 02, 05, 07, 09, 10, 11, 13, 16, 17, and 19. Further, one of them, qIF5-1, localized to chromosomes 05 (38,434,171-39,045,620 bp) contributed to almost all isoflavone components across all environments, and explained 6.37-59.95% of the phenotypic variance, especially explained 49.38, 43.27, 46.59, 45.15 and 52.50% for total isoflavone. The results obtained in the present study will pave the way for a better understanding of the genetics of isoflavone accumulation and reveals the scope available for improvement of isoflavone content through marker-assisted selection.


Assuntos
Glycine max/genética , Isoflavonas/análise , Locos de Características Quantitativas , Sementes/química , Mapeamento Cromossômico , Ligação Genética , Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Glycine max/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...