Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 26(16)2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34443301

RESUMO

Staphylococcus saprophyticus, the food-borne bacteria present in dairy products, ready-to-eat food and environmental sources, has been reported with antibiotic resistance, raising concerns about food microbial safety. The antimicrobial resistance of S. saprophyticus requires the development of new strategies. Light- and photosensitizer-based antimicrobial photodynamic inactivation (PDI) is a promising approach to control microbial contamination, whereas there is limited information regarding the effectiveness of PDI on S. saprophyticus biofilm control. In this study, PDI mediated by natural bioactive compound (curcumin) associated with LED was evaluated for its potential to prevent and disrupt S. saprophyticus biofilms. Biofilms were treated with curcumin (50, 100, 200 µM) and LED fluence (4.32 J/cm2, 8.64 J/cm2, 17.28 J/cm2). Control groups included samples treated only with curcumin or light, and samples received neither curcumin nor light. The action was examined on biofilm mass, viability, cellular metabolic activity and cytoplasmic membrane integrity. PDI using curcumin associated with LED exhibited significant antibiofilm activities, inducing biofilm prevention and removal, metabolic inactivation, intracellular membrane damage and cell death. Likewise, scanning electronic microscopy observations demonstrated obvious structural injury and morphological alteration of S. saprophyticus biofilm after PDI application. In conclusion, curcumin is an effective photosensitizer for the photodynamic control of S. saprophyticus biofilm.


Assuntos
Biofilmes/crescimento & desenvolvimento , Produtos Biológicos/farmacologia , Fotoquimioterapia , Staphylococcus saprophyticus/fisiologia , Biofilmes/efeitos dos fármacos , Contagem de Colônia Microbiana , Curcumina/farmacologia , Staphylococcus saprophyticus/citologia , Staphylococcus saprophyticus/efeitos dos fármacos , Staphylococcus saprophyticus/ultraestrutura
2.
Int J Biol Macromol ; 165(Pt A): 214-221, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32980409

RESUMO

This study investigated the effects of acid degradation of amylopectin on the structure, pasting, and rheological properties of waxy maize starch. It is found that: 1) the amount of amylopectin short-chains with degree of polymerization (DP) ~ 15-50 increased while that of amylopectin long-chains with DP ~ 50-200 decreased by acid hydrolysis; 2) acid hydrolysis produced smaller amylopectin molecules with a narrower size distribution; 3) acid hydrolysis had a minor effect on the crystalline and granular structures of native starch; 4) the pasting viscosity of acid hydrolyzed starch during heating and the consistency coefficient, K, of starch gels increased, whereas the flow behavior index, n, decreased. Correlation analysis was used to clarify the molecular causes for the variations of pasting and rheological properties of acid hydrolyzed starch.


Assuntos
Amilopectina/química , Amido/química , Ácidos Sulfúricos/química , Ceras/química , Amilopectina/ultraestrutura , Hidrólise , Estrutura Molecular , Reologia , Amido/ultraestrutura , Ácidos Sulfúricos/farmacologia , Viscosidade , Zea mays/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...