Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Food Biochem ; 43(11): e12996, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31659813

RESUMO

The activities of ellagic acid in inhibiting mushroom tyrosinase and cell proliferation were evaluated in this research. The results of enzyme kinetics indicated that ellagic acid could effectively inhibit tyrosinase activity. The value of the semi-inhibitory rate (IC50 ) was 0.2 ± 0.05 mM. Ellagic acid inhibited tyrosinase activity in a reversible manner and was a mixed tyrosinase inhibitor. Furthermore, ellagic acid had a good inhibitory effect on the proliferation of mouse melanoma B16 cells and could induce apoptosis. The results acquired from fluorescence spectroscopy revealed that the interaction of ellagic acid with tyrosinase depended on hydrogen bond and electrostatic force. In addition, computational docking showed that ellagic acid interacted with amino acid residues of tyrosinase (Asn19 and Lys372) by hydrogen bond and produced electrostatic interaction with amino residue Lys18. PRACTICAL APPLICATIONS: In the present research, the antityrosinase mechanism of ellagic acid and its effect on mouse melanoma cells were investigated. This study suggested that ellagic acid had a strong inhibitory activity against tyrosinase and cell proliferation,which laid an experimental foundation for the development of new drugs and whitening products. The combined multispectral methods used in this research can be applied to the screening of other antityrosinase inhibitors, further promoting the development and utilization of tyrosinase inhibitors.


Assuntos
Agaricales/enzimologia , Ácido Elágico/farmacologia , Melanoma/tratamento farmacológico , Animais , Proliferação de Células/efeitos dos fármacos , Ácido Elágico/química , Ligação de Hidrogênio/efeitos dos fármacos , Camundongos
2.
Int J Biol Macromol ; 141: 358-368, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31491512

RESUMO

The inhibition of α-glucosidase and glycation is considered as an effective approach for the treatment of type 2 diabetes. In this study, multispectroscopic and molecular docking techniques were employed to investigate the inhibition of tannic acid on α-glucosidase and glycation. Kinetics analyses revealed that tannic acid had a significant inhibition on α-glucosidase (IC50 = 0.35 ±â€¯0.02 µM) in a reversible and mixed competitive manner. The results acquired from fluorescence quenching and ANS-binding fluorescence methods revealed that tannic acid could bind to α-glucosidase and reduce the hydrophobic area on the surface of the enzyme. In addition, synchronous fluorescence analysis showed that tannic acid decreased the hydrophobicity of α-glucosidase and changed the conformation of the enzyme. In vitro glycation assays showed that tannic acid had strong inhibitory effects on the formation of fructosamine, dicarbonyl compounds, and fluorescent AGEs. ANS-binding fluorescence analysis showed that tannic acid could bind to BSA and reduce the hydrophobicity of BSA in glycation. Moreover, the results of molecular docking showed the interaction between tannic acid and α-glucosidase was mainly driven by hydrogen bond, electrostatic, and hydrophobic interaction. And the interaction between tannic acid and BSA was mainly driven by hydrogen bond and hydrophobic interaction.


Assuntos
Inibidores de Glicosídeo Hidrolases/farmacologia , Taninos/farmacologia , alfa-Glucosidases/metabolismo , Inibidores de Glicosídeo Hidrolases/química , Glicosilação , Ligação de Hidrogênio , Modelos Moleculares , Estrutura Molecular , Conformação Proteica , Taninos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...