Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Opt Express ; 13(12): 6335-6356, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36589561

RESUMO

One and half decades ago, Müller glia cells of the retina became subjects of extended research as optical waveguides. It was demonstrated that outside the fovea, these cells are capable of providing light transmission through the thicker parts of the retina from the vitreous surface to the photoreceptor cells. We combined optical modeling of the eye's optical system with numerical methods that describe light guiding within Müller cells to analyze efficiency of light capture and guidance at different peripheral positions. We show that higher order guided modes play an important role, especially in the case of higher incidence angles and extended geometry of the electromagnetic field distributions predicted by the eye's optical model. We analyze the mode structure excited at different retinal peripheral positions and show that actual construction of these cells optimizes light guiding. Our results refine previously published modeling results regarding Müller cells as waveguides and provide extension to the whole area of the retina.

2.
Neuron ; 92(4): 723-738, 2016 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-27773582

RESUMO

Understanding neural computation requires methods such as 3D acousto-optical (AO) scanning that can simultaneously read out neural activity on both the somatic and dendritic scales. AO point scanning can increase measurement speed and signal-to-noise ratio (SNR) by several orders of magnitude, but high optical resolution requires long point-to-point switching time, which limits imaging capability. Here we present a novel technology, 3D DRIFT AO scanning, which can extend each scanning point to small 3D lines, surfaces, or volume elements for flexible and fast imaging of complex structures simultaneously in multiple locations. Our method was demonstrated by fast 3D recording of over 150 dendritic spines with 3D lines, over 100 somata with squares and cubes, or multiple spiny dendritic segments with surface and volume elements, including in behaving animals. Finally, a 4-fold improvement in total excitation efficiency resulted in about 500 × 500 × 650 µm scanning volume with genetically encoded calcium indicators (GECIs).


Assuntos
Comportamento Animal , Corpo Celular/ultraestrutura , Dendritos/ultraestrutura , Espinhas Dendríticas/ultraestrutura , Imagem Óptica/métodos , Animais , Imageamento Tridimensional , Camundongos , Microscopia , Neurônios/ultraestrutura , Razão Sinal-Ruído
3.
Orv Hetil ; 157(18): 724, 2016 May 01.
Artigo em Húngaro | MEDLINE | ID: mdl-27106729

RESUMO

Erratum to the article published on December 27th 2015 in Issue 52 of Orvosi Hetilap [Orv. Hetil., 2015, 156(52), 2120-2126, DOI: 10.1556/650.2015.30329]. The name of Dávid Mezey was not correctly typed. The corresponding author asked for the following correction to be published.

4.
Orv Hetil ; 156(52): 2120-6, 2015 Dec 27.
Artigo em Húngaro | MEDLINE | ID: mdl-26686749

RESUMO

INTRODUCTION: Two-photon microscopy is the ideal tool to study how signals are processed in the functional brain tissue. However, early raster scanning strategies were inadequate to record fast 3D events like action potentials. AIM: The aim of the authors was to record various neuronal activity patterns with high signal-to-noise ratio in an optical manner. METHOD: Authors developed new data acquisition methods and microscope hardware. RESULTS: Multiple Line Scanning enables the experimenter to select multiple regions of interests, doing this not just increases repetition speed, but also the signal-to-noise ratio of the fluorescence transients. On the same principle, an acousto-optical deflector based 3D scanning microscope has been developed with a sub-millisecond temporal resolution and a millimeter z-scanning range. Its usability is demonstrated by obtaining 3D optical recordings of action potential backpropagation in several hundred micrometers long neuronal processes of single neurons and by 3D random-access scanning of Ca(2+) transients in hundreds of neurons in the mouse visual cortex. CONCLUSIONS: Region of interest scanning enables high signal-to-noise ratio and repetition speed, while keeping good depth penetration of the two-photon microscopes.


Assuntos
Imageamento Tridimensional , Microscopia Confocal , Rede Nervosa/fisiologia , Neurônios/fisiologia , Fótons , Potenciais de Ação , Animais , Humanos , Camundongos , Tomografia Computadorizada de Emissão de Fóton Único
5.
Opt Express ; 23(18): 23436-49, 2015 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-26368444

RESUMO

Our aim is to establish a novel combined acousto-optical method for in vivo imaging of the human retina with the two-photon microscope. In this paper we present modeling results based on eye model samples constructed with parameters measured on patients. We used effectively the potential of the electronic compensation offered by the acousto-optic lenses to avoid the use of adaptive optical correction. Simulation predicted lateral resolution between 1.6 µm and 3 µm on the retina. This technology allows the visualization of single cells and promises real time measuring of neural activity in individual neurons, neural segments and cell assemblies with 30-100 µs temporal and subcellular spatial resolution.

6.
Opt Express ; 22(9): 10165-80, 2014 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-24921720

RESUMO

The acousto-optical crystals are frequently used, indispensable elements of high technology and modern science, and yet their precise numerical description has not been available. In this paper an accurate, rapid and quite general model of the AO interaction in a Bragg-cell is presented. The suitability of the simulation is intended to be verified experimentally, for which we wanted to apply the most convincing measurement methods. The difficulty of the verification is that the measurement contains unknown parameters. Therefore we performed an elaborated series of measurements and developed a method for the estimation of the unknown parameters.

7.
Neuron ; 82(4): 908-24, 2014 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-24853946

RESUMO

Sharp-wave ripples are transient oscillatory events in the hippocampus that are associated with the reactivation of neuronal ensembles within specific circuits during memory formation. Fast-spiking, parvalbumin-expressing interneurons (FS-PV INs) are thought to provide fast integration in these oscillatory circuits by suppressing regenerative activity in their dendrites. Here, using fast 3D two-photon imaging and a caged glutamate, we challenge this classical view by demonstrating that FS-PV IN dendrites can generate propagating Ca(2+) spikes during sharp-wave ripples. The spikes originate from dendritic hot spots and are mediated dominantly by L-type Ca(2+) channels. Notably, Ca(2+) spikes were associated with intrinsically generated membrane potential oscillations. These oscillations required the activation of voltage-gated Na(+) channels, had the same frequency as the field potential oscillations associated with sharp-wave ripples, and controlled the phase of action potentials. Furthermore, our results demonstrate that the smallest functional unit that can generate ripple-frequency oscillations is a segment of a dendrite.


Assuntos
Potenciais de Ação/fisiologia , Ondas Encefálicas/fisiologia , Dendritos/fisiologia , Hipocampo/citologia , Hipocampo/fisiologia , Interneurônios/citologia , Parvalbuminas/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Ondas Encefálicas/efeitos dos fármacos , Cálcio/metabolismo , Dendritos/efeitos dos fármacos , Ácido Glutâmico/farmacologia , Proteínas de Fluorescência Verde/genética , Imageamento Tridimensional , Técnicas In Vitro , Interneurônios/efeitos dos fármacos , Interneurônios/metabolismo , Camundongos Endogâmicos C57BL , Estimulação Luminosa
8.
Nat Methods ; 9(2): 201-8, 2012 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-22231641

RESUMO

The understanding of brain computations requires methods that read out neural activity on different spatial and temporal scales. Following signal propagation and integration across a neuron and recording the concerted activity of hundreds of neurons pose distinct challenges, and the design of imaging systems has been mostly focused on tackling one of the two operations. We developed a high-resolution, acousto-optic two-photon microscope with continuous three-dimensional (3D) trajectory and random-access scanning modes that reaches near-cubic-millimeter scan range and can be adapted to imaging different spatial scales. We performed 3D calcium imaging of action potential backpropagation and dendritic spike forward propagation at sub-millisecond temporal resolution in mouse brain slices. We also performed volumetric random-access scanning calcium imaging of spontaneous and visual stimulation-evoked activity in hundreds of neurons of the mouse visual cortex in vivo. These experiments demonstrate the subcellular and network-scale imaging capabilities of our system.


Assuntos
Encéfalo/fisiologia , Fótons , Potenciais de Ação , Animais , Camundongos , Neurônios/fisiologia , Córtex Visual/citologia , Córtex Visual/fisiologia
9.
Ultrasonics ; 51(4): 441-51, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21185582

RESUMO

In the present paper we analyze the electric and acoustic losses in acousto-optic devices, especially in their ultrasonic transducers and the related thermal effects. We include electric and acoustic losses into the classical electric equivalent model of the transducer, to explain the characteristics of the measured electric and thermal behavior. Measured temperature distributions on the acousto-optic crystal faces serve visualization of the conversion efficiency of the radio-frequency input to bulk acoustic waves. We show that the pronounced acoustic frequency dependence of the temperature distribution is in correlation with the frequency dependent losses in the transducer and in the bulk. We also demonstrate experimentally the effectiveness of our active and passive heat removing and temperature stabilization methods.

10.
Appl Opt ; 49(1): 6-11, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-20062484

RESUMO

We present a comprehensive study of the acoustic-to-optic phase transfer during anisotropic Bragg diffraction. Our results refine the operating theory of widely used acousto-optic implementations such as pulse shapers, delay lines, and phase modulators.

11.
Appl Opt ; 46(10): 1860-5, 2007 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-17356631

RESUMO

We propose a two-photon microscope scheme capable of real-time, three-dimensional investigation of the electric activity pattern of neural networks or signal summation rules of individual neurons in a 0.6 mm x 0.6 mm x 0.2 mm volume of the sample. The points of measurement are chosen according to a conventional scanning two-photon image, and they are addressed by separately adjustable optical fibers. This allows scanning at kilohertz repetition rates of as many as 100 data points. Submicrometer spatial resolution is maintained during the measurement similarly to conventional two-photon microscopy.


Assuntos
Potenciais de Ação/fisiologia , Tecnologia de Fibra Óptica/instrumentação , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/instrumentação , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Rede Nervosa/fisiologia , Neurônios/fisiologia , Células Cultivadas , Humanos , Imageamento Tridimensional/métodos , Microscopia de Fluorescência por Excitação Multifotônica/instrumentação , Neurônios/citologia , Fibras Ópticas
12.
J Opt Soc Am A Opt Image Sci Vis ; 23(11): 2954-60, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17047723

RESUMO

Numerical simulation of diffraction on thick holographic gratings in shift-multiplexed optical data storage application is presented. The grating is generated by the interference of a spherical reference wave and a plane signal wave corresponding to a single pixel of the input data page. To describe diffraction on this weak-index-modulated grating, we use the volume integral equation in the first Born approximation. This description yields a convolution integral that can be efficiently evaluated by a 3D fast Fourier transform (FFT) technique. For a 51.2 microm recording layer thickness, a serial-divided single personal computer code was built based on parallel FFT coding principles. Diffracted electric field and Poynting-vector distributions are calculated for probe beams spatially shifted with respect to the reference beams. The shift selectivity curves show significant differences from previous analytical calculations based on paraxial propagation and infinite gratings, as they have monotonic decrease in all three directions instead of sinclike functions with Bragg nulls. With the chosen numerical aperture of 0.6 and linear polarization, both the scalar and vector calculations provided similar results within 5%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...