Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Org Chem ; 89(13): 9344-9351, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38907714

RESUMO

Heptagon-containing distorted nanographenes are used as stoppers for the capping of a [2]rotaxane through a Michael-type addition reaction to vinyl sulfone groups. These curved aromatics are bulky enough to prevent the disassembly of the rotaxane but also give emissive and nonlinear (two-photon absorption and emission) optical properties to the structure.

2.
Materials (Basel) ; 16(2)2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36676571

RESUMO

Nanographenes (NGs) have been attracting widespread interest since they combine peculiar properties of graphene with molecular features, such as bright visible photoluminescence. However, our understanding of the fundamental properties of NGs is still hampered by the high degree of heterogeneity usually characterizing most of these materials. In this context, NGs obtained by atomically precise synthesis routes represent optimal benchmarks to unambiguously relate their properties to well-defined structures. Here we investigate in deep detail the optical response of three curved hexa-peri-hexabenzocoronene (HBC) derivatives obtained by atomically precise synthesis routes. They are constituted by the same graphenic core, characterized by the presence of a heptagon ring determining a saddle distortion of their sp2 network, and differ from each other for slightly different edge functionalization. The quite similar structure allows for performing a direct comparison of their spectroscopic features, from steady-state down to the femtosecond scale, and precisely disentangling the role played by the different edge chemistry.

3.
J Mater Chem B ; 11(3): 675-686, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36562480

RESUMO

Safety assessment of carbon nanomaterials is of paramount importance since they are on the frontline for applications in sensing, bioimaging and drug delivery. The biocompatibility and safety of functionalized nanodiamonds (NDs) are here addressed through the study of the pro-inflammatory response of RAW-264.7 macrophages exposed to new nanodiamonds@corrole hybrids. The corrole unit selected is as a prototype for a hydrophobic organic molecule that can function as a NIR fluorophore reporter, an optical sensor, a photodynamic therapy agent or a photocatalyst. The new functional nanohybrids containing detonated nanodiamonds (NDs) were obtained through esterification using carboxylated NDs and glycol corroles. The success of the covalent functionalization via carbodiimide activation was confirmed through X-ray photoelectron spectroscopy (XPS), Raman and Fourier transform infrared (FTIR) spectroscopy. The UV-vis absorption and emission spectra of the hybrids are additive with respect to the corrole features. The cellular uptake, localization, cell viability and effects on immune cell activation of the new hybrids and of the precursors were carefully investigated using RAW-264.7 macrophages. Overall results showed that the ND@corrole hybrids had no pro-inflammatory effects on the RAW-264.7 macrophage cell line, making them an ideal candidate for a wide range of biomedical applications.


Assuntos
Nanodiamantes , Porfirinas , Nanodiamantes/química , Sistemas de Liberação de Medicamentos , Porfirinas/farmacologia , Macrófagos
4.
Chem Sci ; 13(35): 10267-10272, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36277627

RESUMO

Herein we describe a novel superhelicene structure consisting of three hexa-peri-hexabenzocoronene (HBC) units arranged in a helical geometry and creating two carbo[5]helicenes and a carbo[7]helicene. The central HBC bears a tropone moiety, which induces a saddle-helix hybrid geometry into the 3D structure of the prepared nanographene. The introduction of multiple helicenes and the position of the tropone unit trigger near-infrared circularly polarized luminescence (NIR-CPL, up to 850 nm, |g lum| = 3.0 × 10-3) combined with good photoluminescence quantum yields (ϕ F = 0.43) and upconverted emission based on two-photon absorption (TPA). Compared to previously reported superhelicenes of similar size, higher quantum yields, CPL brightness, and red-shifted absorption and emission spectra are achieved. Besides, chiroptical properties of enantiopure thin films were evaluated. These findings place this novel superhelicene as the first NIR-CPL superhelicene ever reported and make it a promising candidate for use as a chiral luminescent material in optoelectronic devices.

5.
Nanomaterials (Basel) ; 12(11)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35683746

RESUMO

Supramolecular hybrids of graphene quantum dots (GQDs) and phthalocyanine (Pc) dyes were studied as turn-OFF-ON photoluminescence nanosensors for detection of ds-DNA. Pcs with four (Pc4) and eight (Pc8) positive charges were selected to interact with negatively charged GQDs. The photoluminescence of the GQDs was quenched upon interaction with the Pcs, due to the formation of non-emissive complexes. In the presence of ds-DNA, the Pcs interacted preferentially with the negatively charged ds-DNA, lifting the quenching effect over the photoluminescence of the GQDs and restoring their emission intensity. The best performance as a sensor of ds-DNA was registered for the GQD-Pc8, with a limit of detection (LOD) in the picomolar range. The LOD for GQD-Pc8 was more than one order of magnitude lower and its sensitivity was about a factor of three higher than that of the analogue GQD-Pc4 nanosensor. The sensitivity and selectivity of this simple GQD-Pc8 nanosensor is comparable to those of the more sophisticated carbon-based nanosensors for DNA reported previously.

6.
Adv Colloid Interface Sci ; 304: 102667, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35462268

RESUMO

The development of functional materials with uniquely advanced properties lies at the core of nanoscience and nanotechnology. From the myriad possible combinations of organic and/or inorganic blocks, hybrids combining metal nanoclusters and carbon nanomaterials have emerged as highly attractive colloidal materials for imaging, sensing (optical and electrochemical) and catalysis, among other applications. While the metal nanoclusters provide extraordinary luminescent and electronic properties, the carbon nanomaterials (of zero, one or two dimensions) convey versatility, as well as unique interfacial, electronic, thermal, optical, and mechanical properties, which altogether can be put to use for the desired application. Herein, we present an overview of the field, for experts and non-experts, encompassing the basic properties of the building blocks, a systematic view of the chemical preparation routes and physicochemical properties of the hybrids, and a critical analysis of their ongoing and emerging applications. Challenges and opportunities, including directions towards green chemistry approaches, are also discussed.


Assuntos
Carbono , Nanoestruturas , Carbono/química , Catálise , Metais/química , Nanoestruturas/química , Nanotecnologia
7.
Nanomaterials (Basel) ; 12(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35159729

RESUMO

Carbon dots doped with Eu3+ ions (Eu-Cdots) were prepared by a hydrothermal treatment, using citric acid and urea as precursors and Eu (NO3)3 as a europium source. The Eu3+ ions are strongly coordinated with the carboxylate groups at the surface of the Cdots and incorporated within the nanographene network in the carbon core. Vibrational spectroscopy provides evidence of such interaction with identification of bands assigned to the stretching of the Eu-O bond. Eu3+ doped Cdots have larger diameters then undoped Cdots, but they are divided into smaller domains of sp2 carbon. The UV-vis excitation spectrum provides evidence of energy transfer from the Cdots to the Eu3+. The luminescence spectrum shows the characteristic sharp peaks of Eu3+ in the red part of the visible spectrum and a broad emission of Cdots centered at 450 nm. The luminescence of the Cdots is strongly quenched by Hg2+ and Ag+, but not by other cations. The quenching mechanism differs significantly depending on the nature of the ion. Both the blue emission of Cdots and the red emission of Eu3+ are quenched in the presence of Hg2+ while only the emission of the Cdots is affected by the presence of Ag+. A ratiometric sensor can be built using the ratio of luminescence intensities of the Cdots to the Eu3+ peaks.

8.
ACS Nano ; 15(7): 11779-11788, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34240840

RESUMO

The development of appropriate methods to correlate the structure and optical properties of colloidal photonic structures is still a challenge. Structural information is mostly obtained by electron, X-ray, or optical microscopy methods and X-ray diffraction, while bulk spectroscopic methods and low resolution bright-field microscopy are used for optical characterization. Here, we describe the use of reflectance confocal microscopy as a simple and intuitive technique to provide a direct correlation between the ordered/disordered structural morphology of colloidal crystals and glasses, and their corresponding optical properties.

9.
J Mech Behav Biomed Mater ; 119: 104481, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33813332

RESUMO

Elastomers have been used in a variety of biomedical fields, including tissue engineering, soft robotics, prostheses, and cosmetics. Elastomers used for skin grafting scaffolds tend to be biodegradable, but other applications require perdurable elastomers. Advances in perdurable elastomers would allow for the development of a range of substrates useful in the creation of joint prostheses, chronic neural electrodes, implantables, and wearables. Still, for these, tailored mechanical properties and biocompatibility are required. In this work, several perdurable alkene-styrene elastomers and novel polymer blends are investigated for their stress-strain curves; with quantification of Young's moduli, fatigue behavior and standard biocompatibility. In particular, this study attempts to study polymers with mechanical properties similar to the complex characteristics of skin, through comparison with porcine skin samples. Poly (vinylidene fluoride-trifluoroethylene), P(VDF-TrFE), a flexible polymer previously used as a wearable sensor and second skin component, was here used for comparison studies. Interestingly, this study points out that elastomer mechanical properties can be modulated to better replicate the elastic modulus of skin, in particular for KratonTM D1152, a Styrene-Butadiene-Styrene block copolymer. Namely, this is the case when such an elastomer is prepared as an electrospun matrix or as a flat dense film under low temperatures. Moreover, a specific method was optimized to obtain electrospun fibers of this alkene-styrene copolymer.


Assuntos
Materiais Biocompatíveis , Poliestirenos , Animais , Elastômeros , Polímeros , Suínos
10.
Commun Chem ; 4(1): 142, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36697839

RESUMO

Mitochondria metabolism is an emergent target for the development of novel anticancer agents. It is amply recognized that strategies that allow for modulation of mitochondrial function in specific cell populations need to be developed for the therapeutic potential of mitochondria-targeting agents to become a reality in the clinic. In this work, we report dipolar and quadrupolar quinolizinium and benzimidazolium cations that show mitochondria targeting ability and localized light-induced mitochondria damage in live animal cells. Some of the dyes induce a very efficient disruption of mitochondrial potential and subsequent cell death under two-photon excitation in the Near-infrared (NIR) opening up possible applications of azonia/azolium aromatic heterocycles as precision photosensitizers. The dipolar compounds could be excited in the NIR due to a high two-photon brightness while exhibiting emission in the red part of the visible spectra (600-700 nm). Interaction with the mitochondria leads to an unexpected blue-shift of the emission of the far-red emitting compounds, which we assign to emission from the locally excited state. Interaction and possibly aggregation at the mitochondria prevents access to the intramolecular charge transfer state responsible for far-red emission.

11.
Angew Chem Int Ed Engl ; 59(18): 7139-7145, 2020 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-32159924

RESUMO

A new family of distorted ribbon-shaped nanographenes was designed, synthesized, and their optical and electrochemical properties were evaluated, pointing out an unprecedented correlation between their structural characteristics and the two-photon absorption (TPA) responses and electrochemical band gaps. Three nanographene ribbons have been prepared: a seven-membered-ring-containing nanographene presenting a tropone moiety at the edge, its full-carbon analogue, and a purely hexagonal one. We have found that the TPA cross-sections and the electrochemical band gaps of the seven-membered-ring-containing compounds are higher and lower, respectively, than those of the fully hexagonal polycyclic aromatic hydrocarbon (PAH). Interestingly, the inclusion of additional curvature has a positive effect in terms of non-linear optical properties of those ribbons.

12.
Angew Chem Int Ed Engl ; 58(24): 8068-8072, 2019 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-30968999

RESUMO

A unique rippled nanographene consisting of 52 fused rings is presented in which six out-of-plane motifs are fully fused into a triangular aromatic surface with a size of approximately 2.5 nm. Three units of an unprecedented fully lateral π-extended octabenzo[5]helicene together with three units of saddle-shaped heptagonal rings are combined in a single structure, leading to a well-soluble warped nanographene. The two diastereomeric pairs of possible enantiomers were isolated, and their linear, non-linear, and chiroptical properties were evaluated, revealing outstanding quantum yield and brightness values at low energy, together with good chiroptical responses in both absorption and emission.

13.
Angew Chem Int Ed Engl ; 57(45): 14782-14786, 2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30144368

RESUMO

The synthesis and characterization of an enantiopure superhelicene nanographene is reported in which two saddle-shaped and one planar hexabenzocoronene (HBC) units are arranged in a helicoidal shape to form an undecabenzo[7]carbohelicene. The described compound is the first fully π-extended [7]helicene. Racemic resolution of the helical nanographene permitted analysis of the chiroptical properties and revealed dissymmetry factors in the range of 2×10-3 both in the absorption and in the emission measurements. Remarkably, non-linear photophysical analysis demonstrated a two-photon absorption cross-section of 870 GM at 800 nm and a perfect overlap between linear, non-linear, and chiral emissions.

14.
Nanoscale ; 10(26): 12505-12514, 2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-29931025

RESUMO

Carbon nanodots (Cdots) are now emerging as promising nonlinear fluorophores for applications in biological environments. A thorough and systematic approach to the two-photon induced emission of Cdots that could provide design guidelines to control their nonlinear emission properties is still missing. In this work, we address the nonlinear optical spectroscopy of Cdots prepared by controlled chemical cutting of graphene oxide (GO). The two-photon absorption in the 700-1000 nm region and the corresponding emission spectrum are carefully investigated. The highest two-photon absorption cross-section estimated was 130 GM at 720 nm. This value is comparable with the one reported for graphene nanoribbons with push-pull architecture. The emission spectrum depends on the excitation mode. At the same excitation energy, nonlinear excitation results in excitation-wavelength independent emission, while upon linear excitation the emission is excitation-wavelength dependent. The biphotonic interaction seems to be selective towards sp2 clusters bearing electron donor and acceptor groups found in push-pull architectures. Both linear and nonlinear emission can be understood based on the existence of isolated sp2 clusters involved in π-π stacking interactions with clusters in adjacent layers.

15.
Chem Sci ; 9(16): 3917-3924, 2018 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-29780523

RESUMO

Herein we describe a distorted ribbon-shaped nanographene exhibiting unprecedented combination of optical properties in graphene-related materials, namely upconversion based on two-photon absorption (TPA-UC) together with circularly polarized luminescence (CPL). The compound is a graphene molecule of ca. 2 nm length and 1 nm width with edge defects that promote the distortion of the otherwise planar lattice. The edge defects are an aromatic saddle-shaped ketone unit and a [5]carbohelicene moiety. This system is shown to combine two-photon absorption and circularly polarized luminescence and a remarkably long emission lifetime of 21.5 ns. The [5]helicene is responsible for the chiroptical activity while the push-pull geometry and the extended network of sp2 carbons are factors favoring the nonlinear absorption. Electronic structure theoretical calculations support the interpretation of the results.

16.
J Org Chem ; 83(9): 5282-5287, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29644855

RESUMO

The synthesis of two triads with two porphyrinyl units linked by oligopyridine derivatives and a new ß-functionalized porphyrin-dihydroazepine is described. One of the porphyrin-oligopyridine triads has a quinquepyridine unit connecting the porphyrins ß-pyrrolic positions, while the other one has an asymmetric quaterpyridine with one of the pyridines fused to the porphyrin. All compounds have fluorescence emission quantum yields in the range of meso-tetraphenylporphyrin (16-22%).

17.
Chem Commun (Camb) ; 54(27): 3359-3362, 2018 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-29542798

RESUMO

Turning on the fluorescence of [3]cumulenes: we report the luminescence at room temperature upon aggregation of [3]cumulenes functionalized with propeller-like heptagon-containing polyphenylenes. These endgroups turn on the emission of a [3]cumulene by steric protection and restriction of their intramolecular rotations in the aggregates.

18.
Phys Chem Chem Phys ; 19(16): 10255-10263, 2017 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-28265616

RESUMO

Quindoline (QUIND, indolo[3,2-b]quinoline) and cryptolepine (CRYPT, 5-methyl-10H-indolo[3,2-b]quinoline) together with their corresponding derivatives have been studied for decades due to their important biological activity against diseases like malaria. The biological activity of drugs is routinely investigated using fluorescence based methods. However, recent reports show that the photophysics of CRYPT and its analogues is not yet understood. Herein, the photophysics of CRYPT and QUIND is studied in aqueous solutions at different pH values and in both protic and aprotic solvents of different polarities. CRYPT and QUIND are shown to exist in different prototropic forms depending on pH and solvent polarity. CRYPT is found to be more sensitive to the solvent nature. Both compounds are shown to have two-photon stimulated emission. Their two-photon absorption (TPA) cross-sections were measured in the 710-960 nm range. The TPA cross-section is relatively low but allows for the observation of both compounds in HEK 293 T cells, where CRYPT is found mostly in the nucleus and QUIND accumulates in the cytoplasm.

19.
ACS Appl Mater Interfaces ; 7(50): 27720-9, 2015 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-26599347

RESUMO

The efficiency of organic photodetectors and optoelectronic devices is strongly limited by exciton diffusion, in particular for acceptor materials. Although mechanisms for exciton diffusion are well established, their correlation to molecular organization in real systems has received far less attention. In this report, organic single-crystals interfaces were probed with wavelength-dependent photocurrent spectroscopy and their crystal structure resolved using X-ray diffraction. All systems present a dynamic photoresponse, faster than 500 ms, up to 650 nm. A relationship between molecular organization and favorable exciton diffusion in substituted butyl-perylenediimides (PDIB) is established. This is demonstrated by a set of PDIBs with different intra- and interstack distances and short contacts and their impact on photoresponse. Given the short packing distances between PDIs cores along the same stacking direction (3.4-3.7 Å), and across parallel stacks (2.5 Å), singlet exciton in these PDIBs can follow both Förster and Dexter exciton diffusion, with the Dexter-type mechanism assuming special relevance for interstack exciton diffusion. Yet, the response is maximized in substituted PDIBs, where a 2D percolation network is formed through strong interstack contacts, allowing for PDIBs primary excitons to reach with great efficiency the splitting interface with crystalline rubrene. The importance of short contacts and molecular distances, which is often overlooked as a parameter to consider and optimize when choosing materials for excitonic devices, is emphasized.

20.
J Am Chem Soc ; 137(22): 7104-10, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-25990135

RESUMO

Exciton diffusion is at the heart of most organic optoelectronic devices' operation, and it is currently the most limiting factor to their achieving high efficiency. It is deeply related to molecular organization, as it depends on intermolecular distances and orbital overlap. However, there is no clear guideline for how to improve exciton diffusion with regard to molecular design and structure. Here, we use single-crystal charge-transfer interfaces to probe favorable exciton diffusion. Photoresponse measurements on interfaces between perylenediimides and rubrene show a higher photocurrent yield (+50%) and extended spectral coverage (+100 nm) when there is increased dimensionality of the percolation network and stronger orbital overlap. This is achieved by very short interstack distances in different directional axes, which favors exciton diffusion by a Dexter mechanism. Even if the core of the molecule shows strong deviation from planarity, the similar electrical resistance of the different systems, planar and nonplanar, shows that electronic transport is not compromised. These results highlight the impact of molecular organization in device performance and the necessity of optimizing it to take full advantage of the materials' properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...