Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gen Comp Endocrinol ; 291: 113422, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32032603

RESUMO

Fish have been of paramount importance to our understanding of vertebrate comparative neuroendocrinology and the mechanisms underlying the physiology and evolution of gonadotropin-releasing hormones (GnRH) and their genes. This review integrates past and recent knowledge on the Gnrh system in the fish model. Multiple Gnrh isoforms (two or three forms) are present in all teleosts, as well as multiple Gnrh receptors (up to five types), which differ in neuroanatomical localization, pattern of projections, ontogeny and functions. The role of the different Gnrh forms in reproduction seems to also differ in teleost models possessing two versus three Gnrh forms, Gnrh3 being the main hypophysiotropic hormone in the former and Gnrh1 in the latter. Functions of the non-hypothalamic Gnrh isoforms are still unclear, although under suboptimal physiological conditions (e.g. fasting), Gnrh2 may increase in the pituitary to ensure the integrity of reproduction under these conditions. Recent developments in transgenesis and mutagenesis in fish models have permitted the generation of fish lines expressing fluorophores in Gnrh neurons and to elucidate the dynamics of the elaborate innervations of the different neuronal populations, thus enabling a more accurate delineation of their reproductive roles and regulations. Moreover, in combination with neuronal electrophysiology, these lines have clarified the Gnrh mode of actions in modulating Lh and Fsh activities. While loss of function and genome editing studies had the premise to elucidate the exact roles of the multiple Gnrhs in reproduction and other processes, they have instead evoked an ongoing debate about these roles and opened new avenues of research that will no doubt lead to new discoveries regarding the not-yet-fully-understood Gnrh system.


Assuntos
Peixes/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Animais , Encéfalo/metabolismo , Peixes/genética , Peixes/crescimento & desenvolvimento , Genoma , Hormônio Liberador de Gonadotropina/química , Sistemas Neurossecretores/metabolismo , Receptores LHRH/química , Receptores LHRH/metabolismo
2.
Gen Comp Endocrinol ; 279: 184-195, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30923006

RESUMO

Gonadotropin-inhibitory hormone (GnIH) is a hypothalamic neuropeptide belonging to the RFamide peptide family that was first discovered in quail by Tsutsui and co-workers in the year 2000. Since then, different GnIH orthologues have been identified in all vertebrate groups, from agnathans to mammals. These GnIH genes synthesize peptide precursors that encompass two to four C-terminal LPXRFamide peptides. Functional and behavioral studies carried out in birds and mammals have demonstrated a clear inhibitory role of GnIH on GnRH and gonadotropin synthesis and secretion as well as on aggressive and sexual behavior. However, the effects of Gnih orthologues in reproduction remain controversial in fish with both stimulatory and inhibitory actions being reported. In this paper, we will review the main findings obtained in our laboratory on the Gnih system of the European sea bass, Dicentrarchus labrax. The sea bass gnih gene encodes two putative Gnih peptides (sbGnih1 and sbGnih2), and is expressed in the olfactory bulbs/telencephalon, diencephalon, midbrain tegmentum, rostral rhombencephalon, retina and testis. The immunohistochemical study performed using specific antibodies developed in our laboratory revealed Gnih-immunoreactive (ir) perikarya in the same central areas and Gnih-ir fibers that profusely innervated the brain and pituitary of sea bass. Moreover, in vivo studies revealed the inhibitory role of centrally- and peripherally-administered Gnih in the reproductive axis of male sea bass, by acting at the brain (on gnrh and kisspeptin expression), pituitary (on gnrh receptors and gonadotropin synthesis and release) and gonadal (on androgen secretion and gametogenesis) levels. Our results have revealed the existence of a functional Gnih system in sea bass, and have provided evidence of the differential actions of the two Gnih peptides on the reproductive axis of this species, the main inhibitory role in the brain and pituitary being exerted by the sbGnih2 peptide. Recent studies developed in our laboratory also suggest that Gnih might be involved in the transduction of photoperiod and temperature information to the reproductive axis, as well as in the modulation of daily and seasonal rhythmic processes in sea bass.


Assuntos
Bass/metabolismo , Gonadotropinas/metabolismo , Hormônios Hipotalâmicos/metabolismo , Animais , Hormônios Hipotalâmicos/química , Especificidade de Órgãos , Reprodução/fisiologia
3.
J Comp Neurol ; 526(2): 349-370, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29044516

RESUMO

Recently, gonadotropin-inhibitory hormone (GnIH) has emerged as an important regulator of reproduction in birds and mammals. This RFamide neuropeptide has neuromodulatory functions and controls the synthesis and/or release of gonadotropin-releasing hormone (GnRH) and gonadotropins. Although teleosts represent about half of all living vertebrates, scientific and technological advances on the Gnih system in fish are scarce, contradictory, and inconclusive. Research on the fish Gnih system appears necessary to better clarify its role in the neuroendocrine and environmental control of vertebrate reproduction. In this study, we cloned a full-length sequence for the Gnih precursor of a flatfish, the Senegalese sole, coding for three putative Gnih peptides (ssGnih). We also generated specific antibodies against these ssGnih peptides, and used them to localize Gnih cells and their projections in the brain and pituitary. The expression of gnih was particularly evident in the diencephalon, but also in the olfactory bulbs/cerebral hemispheres, optic tectum/tegmentum, retina, and pituitary. The three antibodies used provided consistent results and showed that ssGnih-immunoreactive perikarya were present in the olfactory bulbs, ventral telencephalon, caudal preoptic area, dorsal tegmentum and rostral rhombencephalon, and their fibers innervated the brain and pituitary profusely. Intramuscular injection of ssGnih-3 provoked a significant reduction in gnrh-3 and lh expression, whereas ssGnih-2 treatment did not affect transcript levels of the main reproductive genes. Our results reveal the existence of a functional Gnih system in the sole brain, profusely innervating different brain areas and the pituitary gland, which could represent an important factor in the neuroendocrine control of flatfish reproduction.


Assuntos
Encéfalo/metabolismo , Clonagem Molecular/métodos , Linguados/metabolismo , Hormônios Hipotalâmicos/genética , Hormônios Hipotalâmicos/metabolismo , Sequência de Aminoácidos , Animais , Hormônios Hipotalâmicos/química , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Filogenia , RNA Mensageiro/metabolismo , Distribuição Tecidual
4.
PLoS One ; 11(10): e0165494, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27788270

RESUMO

Gonadotropin-inhibitory hormone (GnIH) is a neurohormone that suppresses reproduction by acting at both the brain and pituitary levels. In addition to the brain, GnIH may also be produced in gonads and can regulate steroidogenesis and gametogenesis. However, the function of GnIH in gonadal physiology has received little attention in fish. The main objective of this study was to evaluate the effects of peripheral sbGnih-1 and sbGnih-2 implants on gonadal development and steroidogenesis during the reproductive cycle of male sea bass (Dicentrarchus labrax). Both Gnihs decreased testosterone (T) and 11-ketotestosterone (11-KT) plasma levels in November and December (early- and mid-spermatogenesis) but did not affect plasma levels of the progestin 17,20ß-dihydroxy-4-pregnen-3-one (DHP). In February (spermiation), fish treated with sbGnih-1 and sbGnih-2 exhibited testicles with abundant type A spermatogonia and partial spermatogenesis. In addition, we determined the effects of peripheral Gnih implants on plasma follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh) levels, as well as on brain and pituitary expression of the main reproductive hormone genes and their receptors during the spermiation period (February). Treatment with sbGnih-2 increased brain gnrh2, gnih, kiss1r and gnihr transcript levels. Whereas, both Gnihs decreased lhbeta expression and plasma Lh levels, and sbGnih-1 reduced plasmatic Fsh. Finally, through behavioral recording we showed that Gnih implanted animals exhibited a significant increase in diurnal activity from late spermatogenic to early spermiogenic stages. Our results indicate that Gnih may regulate the reproductive axis of sea bass acting not only on brain and pituitary hormones but also on gonadal physiology and behavior.


Assuntos
Bass/metabolismo , Hormônios Hipotalâmicos/farmacologia , Locomoção/efeitos dos fármacos , Esteroides/biossíntese , Testículo/efeitos dos fármacos , Testículo/metabolismo , Sequência de Aminoácidos , Animais , Gametogênese/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Gonadotropinas/sangue , Hormônios Hipotalâmicos/química , Masculino , Hipófise/efeitos dos fármacos , Hipófise/metabolismo , Testículo/crescimento & desenvolvimento
5.
J Comp Neurol ; 524(1): 176-98, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26105807

RESUMO

Gonadotropin-inhibitory hormone (GnIH) is a neuropeptide that suppresses reproduction in birds and mammals by inhibiting GnRH and gonadotropin secretion. GnIH orthologs with a C-terminal LPXRFamide (LPXRFa) motif have been identified in teleost fish. Although recent work also suggests its role in fish reproduction, studies are scarce and controversial, and have mainly focused on cyprinids. In this work we cloned a full-length cDNA encoding an LPXRFa precursor in the European sea bass, Dicentrarchus labrax. In contrast to other teleosts, the sea bass LPXRFa precursor contains only two putative RFamide peptides, termed sbLPXRFa1 and sbLPXRFa2. sblpxrfa transcripts were expressed predominantly in the olfactory bulbs/telencephalon, diencephalon, midbrain tegmentum, retina, and gonads. We also developed a specific antiserum against sbLPXRFa2, which revealed sbLPXRFa-immunoreactive (ir) perikarya in the olfactory bulbs-terminal nerve, ventral telencephalon, caudal preoptic area, dorsal mesencephalic tegmentum, and rostral rhombencephalon. These sbLPXRFa-ir cells profusely innervated the preoptic area, hypothalamus, optic tectum, semicircular torus, and caudal midbrain tegmentum, but conspicuous projections also reached the olfactory bulbs, ventral/dorsal telencephalon, habenula, ventral thalamus, pretectum, rostral midbrain tegmentum, posterior tuberculum, reticular formation, and viscerosensory lobe. The retina, pineal, vascular sac, and pituitary were also targets of sbLPXRFa-ir cells. In the pituitary, this innervation was observed close to follicle-stimulating hormone (FSH), luteinizing hormone (LH) and growth hormone (GH) cells. Tract-tracing retrograde labeling suggests that telencephalic and preoptic sbLPXRFa cells might represent the source of pituitary innervation. The immunohistochemical distribution of sbLPXRFa cells and fibers suggest that LPXRFa peptides might be involved in some functions as well as reproduction, such as feeding, growth, and behavior.


Assuntos
Bass/metabolismo , Hormônios Peptídicos/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos/metabolismo , Bass/anatomia & histologia , Bass/genética , Encéfalo/anatomia & histologia , Encéfalo/metabolismo , Clonagem Molecular/métodos , Feminino , Imuno-Histoquímica/métodos , Masculino , Dados de Sequência Molecular , Hormônios Peptídicos/genética , Hormônios Peptídicos/imunologia , Filogenia , Hipófise/anatomia & histologia , Hipófise/metabolismo , Homologia de Sequência de Aminoácidos
6.
Environ Res ; 135: 227-35, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25462670

RESUMO

In recent years, Solea senegalensis has increasingly been used in pollution monitoring studies. In order to assess its response to some particular widespread pollutants, juveniles of S. senegalensis were administered an intraperitoneal injection of the model aryl hydrocarbon receptor agonist ß-naphtoflavone (ßNF) and chemicals of environmental concern, such as the fungicide ketoconazole (KETO), the lipid regulator gemfibrozil (GEM), the surfactant nonylphenol (NP) and the synthetic hormone ethinylestradiol (EE2). Two days after injection, the effect of these chemicals was followed up as alterations of hepatic microsomal activities of the cytochrome P450 (CYPs) and associated reductases, carboxylesterases (CbEs) and the conjugation enzyme uridine diphosphate glucuronyltransferase (UDPGT). In the cytosolic fraction of the liver, the effect on CbEs, glutathione S-transferase (GST) and antioxidant activities was also considered. Alterations on the endocrine reproductive system were evaluated by plasma levels of vitellogenin (VTG) and the sex steroids estradiol (E2), testosterone (T), 11-ketotestosterone (11KT) and the progestin 17α,20ß-dihydroxy-4-pregnen-3-one (17,20ß-P). Injection with the model compound ßNF induced the hydrolysis rate of the seven CYP substrates assayed. The xenobiotic GEM induced three CYP-related activities (e.g. ECOD) and UDPGT, but depressed antioxidant defenses. EE2 induced four CYPs, more significantly ECOD and BFCOD activities. The xenoestrogens NP and EE2 altered the activities of CbE in microsomes and catalase, and were the only treatments that induced de novo VTG synthesis. In addition, the progestin 17,20ß-P, was induced in NP-injected fish. None of the treatments caused statistically significant effects on steroid plasma levels. In conclusion, the CYP substrates assayed responded specifically to treatments and juveniles of S. senegalensis appear good candidates for assessing xenobiotics exposure.


Assuntos
Biomarcadores/metabolismo , Linguados/sangue , Xenobióticos/metabolismo , Xenobióticos/farmacologia , Animais , Biomarcadores/sangue , Etinilestradiol/administração & dosagem , Etinilestradiol/farmacologia , Flavonas/administração & dosagem , Flavonas/farmacologia , Genfibrozila/administração & dosagem , Genfibrozila/farmacologia , Hormônios Esteroides Gonadais/sangue , Hidrólise/efeitos dos fármacos , Cetoconazol/administração & dosagem , Cetoconazol/farmacologia , Microssomos Hepáticos/efeitos dos fármacos , Fenóis/administração & dosagem , Fenóis/farmacologia , Receptores de Hidrocarboneto Arílico/agonistas , Estatísticas não Paramétricas , Vitelogeninas/sangue , Xenobióticos/administração & dosagem
7.
Gen Comp Endocrinol ; 191: 92-101, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23792033

RESUMO

Previous studies on Senegalese sole (Solea senegalensis) indicated that cultured broodstock (first generation, G1) have lower tissue levels of arachidonic acid (20:4n-6, ARA) than wild counterparts. ARA is metabolized to form prostaglandins (PGs) that are involved in steroid production and follicle maturation in fish. In the present study the effects of different dietary levels of ARA on blood lipid and fatty acid composition, prostaglandin (PGF2α, PGF3α, PGE2 and PGE3) levels and plasmatic steroid levels (11-ketotestosterone, 11-KT, testosterone, T and estradiol, E2) in G1 Senegalese sole were studied. For this purpose, 12 groups of ten fish (1:1 male and female), were fed six diets (each diets was fed to two groups) with different dietary ARA levels over nine months (diets A=0.7, B=1.6, C=2.3, D=3.2, E=5.0, F=6.0% ARA). ARA and CHOL levels in blood showed a significant increase in an ARA dose related manner (P<0.05) whereas EPA and EPA/ARA ratio were reduced. In males, steroid (11-KT and T) levels increased significantly with increasing dietary ARA in a dose dependent manner, whereas in females E2 did not show any change related to dietary ARA content. Plasma concentration of 3-series PGs (i.e., PGE3 and PGF3α) were reduced in parallel to increased ARA levels in blood (P<0.05) and levels of PGs 3-series were always higher than 2-series PGs (PGE2 and PGF2α). In conclusion there is an effect of dietary ARA on steroid production of Senegalese sole males, which might have important consequences in the reproduction of cultured fish.


Assuntos
Ácidos Araquidônicos/sangue , Ácidos Graxos/sangue , Linguados/sangue , Prostaglandinas/sangue , Esteroides/sangue , Animais , Ácido Araquidônico , Feminino , Masculino
8.
Biol Reprod ; 86(1): 1-12, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21880947

RESUMO

In fish, like in other vertebrates, luteinizing hormone (Lh) is an essential hormone for the completion of oocyte maturation. In salmonid fish (i.e., salmon and trout), oocyte maturation is induced by Lh through its stimulation of the production of the maturation-inducing steroid, 17alpha,20beta-dihydroxy-4-pregnen-3-one (17,20beta-P). In mammals, several factors, including ovarian cytokines and growth factors, have been reported to contribute to the regulation of oocyte maturation. In fish, growing evidence suggests that tumor necrosis factor alpha (hereafter referred to as Tnf) could play multiple physiological roles in the control of ovarian function. In the present study, we have investigated the possible involvement of Tnf in the regulation of oocyte maturation in brown trout (Salmo trutta). Our results show that in vitro treatment of brown trout preovulatory follicles with coho salmon (Oncorhynchus kisutch) Lh (sLh) significantly increased oocyte maturation, as assessed by germinal vesicle breakdown (GVBD), and that this effect was blocked by TAPI-1 (an inhibitor of Tnf-converting enzyme or Tace/Adam17). Furthermore, treatment of preovulatory follicles with sLh increased the expression of tnf and tace/adam17 as well as the secretion of the Tnf protein. Importantly, recombinant trout Tnf (rtTnf) significantly increased GVBD in vitro. Our results also show that the stimulatory effects of rtTnf on oocyte maturation may be the result of the direct involvement of rtTnf in stimulating the production of the maturation-inducing steroid as evidenced, first, by the stimulatory effects of rtTnf on 17,20beta-P production in vitro and on the expression of cholesterol side-chain cleavage P450 cytochrome (p450scc) and 20beta-hydroxysteroid dehydrogenase/carbonyl reductase 1 (cbr1), the enzyme responsible for the production of 17,20beta-P, and, second, by the ability of TAPI-1 to block the stimulatory effects of sLh on 17,20beta-P production and cbr1 expression. Furthermore, sLh and rtTnf increased the expression of the Lh receptor (lhr) and decreased the expression of aromatase (cyp19a1), and TAPI-1 completely blocked the effects of sLh. These results strongly suggest that Tnf may contribute to the regulation of oocyte maturation by Lh in trout.


Assuntos
Hormônio Luteinizante/fisiologia , Oócitos/fisiologia , Ovário/fisiologia , Truta/fisiologia , Fator de Necrose Tumoral alfa/farmacologia , Animais , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Oócitos/citologia , Fator de Necrose Tumoral alfa/metabolismo
9.
Artigo em Inglês | MEDLINE | ID: mdl-21466857

RESUMO

Photoperiod and temperature are known as the main synchronizers of seasonal reproduction in fish. This paper studied the role of photoperiod on the synchronization of F1 Senegal sole reproduction rhythms. Fish were maintained under constant short-photoperiod (9L:15D) from the winter solstice onwards (experimental group) or under naturally-changing photoperiod (control group), and water temperature naturally oscillated in both groups. Blood samples were collected during the reproduction season at pre-spawning (March), spawning (April) and post-spawning (May) to determine the endocrine status. Spawning events and egg quality parameters were also monitored. The results revealed a significant increase in nocturnal melatonin concentration from March to May in the control group, while in the experimental group such seasonal change did not occur. As to plasma levels of vitellogenin, testosterone, estradiol and 11keto-testosterone, differences between groups were found mostly in March, while in April and May levels were often similar. Spawning was observed in both groups, although the experimental group started slightly earlier and also finished earlier than the control group, perhaps as a result of the increase in sex steroids and VTG observed at pre-spawning. Briefly, reproduction rhythms persisted in the absence of the natural lengthening of photoperiod, although photoperiod manipulation altered the seasonal modulation of melatonin, increased sex steroids and vitellogenin at pre-spawning, and slightly advanced the timing of spawning.


Assuntos
Estradiol/sangue , Peixes/fisiologia , Melatonina/sangue , Fotoperíodo , Reprodução , Testosterona/sangue , Vitelogeninas/sangue , Animais , Ensaio de Imunoadsorção Enzimática , Feminino , Peixes/sangue , Masculino
10.
J Exp Zool A Ecol Genet Physiol ; 315(3): 162-9, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21370485

RESUMO

The effect of water temperature during the development of fish larvae on sex differentiation is well known, but not so well known is the impact of the daily thermocycles. Our aim was to investigate the effect of early exposure of Senegal sole larvae to different temperature cycles on gonad development, sex ratio, and sex steroid (11-ketotestosterone (11-KT); estradiol (E(2) ); and testosterone, (T)) content in muscle extracts of juveniles. From 1 to 97 days posthatching (DPH) fish larvae and post-larvae were subjected to three temperature regimes: Thermophase-Cryophase (TC), Cryophase-Thermophase (CT), and constant temperature. In fish exposed to TC, sex determination occurred earlier, because 90% of soles were males/females at 110 DPH, whereas 45% of fish under CT were undifferentiated at that time. Fish under TC showed the highest growth rates, followed by fish under constant temperature and by fish under CT, the differences being statistically significant between the TC and CT groups. Regarding sex ratio, juveniles exposed to TC showed a higher proportion of females than fish under CT or constant temperature. Under TC, fish showed the highest concentration of E(2) , whereas 11-KT concentration was highest in fish under CT and constant temperature. Fish under constant temperature and CT showed higher T levels than those under TC. These results provide the first insights into the effect of daily thermocycles on sex differentiation in fish, and underline the key role of natural environmental cycles on the control of sex ratios during larval development, which may be applied to the manipulation of sex ratio in aquaculture.


Assuntos
Linguados/fisiologia , Hormônios Esteroides Gonadais/metabolismo , Gônadas/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Fotoperíodo , Adaptação Fisiológica , Animais , Meio Ambiente , Estradiol/análise , Estradiol/metabolismo , Feminino , Hormônios Esteroides Gonadais/análise , Gônadas/anatomia & histologia , Larva/metabolismo , Masculino , Músculo Esquelético/química , Músculo Esquelético/metabolismo , Razão de Masculinidade , Temperatura , Testosterona/análogos & derivados , Testosterona/análise , Testosterona/metabolismo
11.
Biol Reprod ; 84(6): 1171-81, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21293031

RESUMO

Different yields, biopotency, and in vivo pharmacokinetics are obtained for recombinant sea bass gonadoltropins depending on the production system and DNA construct, but they show specific activation of their corresponding receptors. Gonadotropins (GTHs) are glycoprotein hormones that play a major role in the regulation of gonadal functions. Recently, we succeeded in isolating the native sea bass Fsh from sea bass pituitaries, but to ensure the availability of bioactive GTHs and no cross-contamination with other related glycoproteins, recombinant sea bass GTHs were produced using two expression systems-insect and mammalian cells-and different constructs that yielded tethered or noncovalently bound dimers. Their production levels, binding specificity to their homologous cognate receptors, and bioactivity were investigated and compared. Both expression systems were successful in the generation of bioactive recombinant GTHs, but insect Sf9 cells yielded higher amounts of recombinant proteins than mammalian Chinese Hamster Ovary (CHO) stable clones. All recombinant GTHs activated their cognate receptors without cross-ligand binding and were able to stimulate sea bass gonadal steroidogenesis in vitro, although with different biopotencies. To assess their use for in vivo applications, their half-life in sea bass plasma was evaluated. Sf9-GTHs had a lower in vivo stability compared with CHO-GTHs due to their rapid clearance from the blood circulation. Cell-dependent glycosylation could be contributing to the final in vivo stability and biopotency of these recombinant glycoproteins. In conclusion, both insect and mammalian expression systems produced bioactive sea bass recombinant gonadotropins, although with particular features useful for different proposes (e.g., antibody production or in vivo studies, respectively).


Assuntos
Bass/fisiologia , Hormônio Foliculoestimulante/metabolismo , Hormônio Luteinizante/metabolismo , Proteínas Recombinantes/metabolismo , Animais , Linhagem Celular , Cricetinae , Hormônio Foliculoestimulante/genética , Regulação da Expressão Gênica/fisiologia , Insetos , Hormônio Luteinizante/genética , Proteínas Recombinantes/genética
12.
Artigo em Inglês | MEDLINE | ID: mdl-21112410

RESUMO

The Senegalese sole (Solea senegalensis) is a flatfish that exhibits severe reproductive dysfunctions in captivity. This study aimed at investigating the existence of a dopamine (DA) inhibitory tone on the reproductive axis of this species. Four groups of Senegalese sole breeders were treated with, saline (controls, CNT), the DA antagonist pimozide (PIM, 5 mg kg(-1)), gonadotropin-releasing hormone agonist (GnRHa, 40 µg kg(-1)) or a combination of PIM+GnRHa (COMB). Effects were evaluated on pituitary GnRH levels (ELISA), pituitary gonadotropin subunit transcript levels (qPCR), plasma levels of sex steroids and vitellogenin (ELISA), gonad development (histology), spermiation and egg production. The GnRHa treatment induced egg release and stimulated testis maturation. In males, PIM did not affect pituitary GnRH content, but enhanced GnRHa-induced pituitary GPα transcripts and modified plasma androgen levels; moreover, PIM stimulated spermatogenesis and milt production, both alone and combined with GnRHa. In females, PIM did not affect pituitary and plasma endocrine parameters and did not affect egg production and fertilization success of the broodstock, either alone or in the combined treatment. In conclusion, data indicated the existence of a DA inhibition in mature males, which would be absent or weakly expressed in females.


Assuntos
Antagonistas de Dopamina/farmacologia , Linguados/fisiologia , Hormônio Liberador de Gonadotropina/agonistas , Gônadas/efeitos dos fármacos , Pimozida/farmacologia , Hipófise/efeitos dos fármacos , Animais , Estradiol/sangue , Feminino , Fertilidade/efeitos dos fármacos , Subunidade beta do Hormônio Folículoestimulante/genética , Subunidade beta do Hormônio Folículoestimulante/metabolismo , Subunidade alfa de Hormônios Glicoproteicos/genética , Subunidade alfa de Hormônios Glicoproteicos/metabolismo , Gônadas/fisiologia , Hormônio Luteinizante Subunidade beta/genética , Hormônio Luteinizante Subunidade beta/metabolismo , Masculino , Hipófise/fisiologia , Contagem de Espermatozoides , Testosterona/análogos & derivados , Testosterona/sangue , Transcrição Gênica , Vitelogeninas/sangue
13.
Artigo em Inglês | MEDLINE | ID: mdl-19422929

RESUMO

The gonadotropins (GTHs), follicle stimulating hormone (FSH) and luteinizing hormone (LH), determine the reproductive competence of adult breeders, but also participate in the establishment of the reproductive axis at early stages of life. The present study aimed at studying, by real-time qPCR, the gene expression levels of GTH subunits (FSHbeta, LHbeta and the common glycoprotein alpha -GPalpha- subunit) during early development in Senegalese sole, from 1 to 100 days post hatching (dph). The FSHbeta, LHbeta and GPalpha transcripts were first detected at 1, 5 and 3 dph, respectively. Transcript levels of FSHbeta, and GPalpha, increased continuously to peak levels at mid metamorphosis (15 dph), decreasing thereafter; levels were maintained low until a second increment detected at 90 and 100 dph. Contrarily, transcript levels of LHbeta were very low and only detectable around metamorphosis. All three subunits were highly expressed in 1-year old soles, with FSHbeta and GPalpha transcript levels 10-fold higher than those of LHbeta. These results suggest, i) activity of the reproductive axis early after hatching (1 dph), which was highest during the metamorphic climax and, ii) a predominant role of FSH, rather than LH, in the early development of the reproductive axis in Senegalese sole.


Assuntos
Linguados/crescimento & desenvolvimento , Hormônio Foliculoestimulante/genética , Hormônio Luteinizante/genética , Animais , Feminino , Linguados/genética , Regulação da Expressão Gênica no Desenvolvimento , Subunidade alfa de Hormônios Glicoproteicos/genética , Larva/metabolismo , Hormônio Luteinizante Subunidade beta/genética , Metamorfose Biológica
14.
Artigo em Inglês | MEDLINE | ID: mdl-18835359

RESUMO

In this paper we attempted to investigate the existence of daily fluctuations on plasma sexual steroids (17beta-estradiol, E(2) and testosterone, T) in Senegal sole (Solea senegalensis) females. We described the monthly day/night concentrations and seasonal daily rhythms in animals reared under natural photo- and thermo-period. In addition, the influence of the natural annual fluctuation of the water temperature on the plasma concentration of these steroids was investigated, using one group of Senegal sole under a natural photoperiod, but with an attenuated thermal cycle (around 17-20 degrees C) for one year. Although no significant day/night differences were detected in monthly samplings, the existence of an annual rhythm of E(2) and T (p<0.01) with an acrophase in February was revealed by COSINOR analysis. Maximum values were reached in March for both steroids (6.1+/-1.7 ng mL(-1) at mid-dark, MD and 4.0+/-0.6 ng mL(-1) at mid-light, ML for E2 and 1.4+/-0.4 ng mL(-1) at MD and 0.8+/-0.1 ng mL(-1) at ML for T) in anticipation of the spawning season (May-June). As regards seasonal daily rhythms, the presence of daily oscillations was revealed. At the spring solstice (21st March) a daily rhythm was observed for both steroids (COSINOR, p<0.01), with an acrophase at 20:00 h (E(2)) and at 21:08 h (T). In summer, autumn and winter no daily rhythms were observed due to the low steroid levels at those seasons. When Senegal sole females were submitted to an attenuated annual thermal cycle, the steroid rhythm disappeared (there was no surge in spring, as in the control group) and these fish did not spawn, despite being subjected to natural photoperiod conditions. This result underlined the importance of the natural annual fluctuation of water temperature and photoperiod on the synchronization of the spawning season and on the onset of steroidogenesis.


Assuntos
Relógios Biológicos , Ritmo Circadiano , Estradiol/sangue , Linguados/metabolismo , Estações do Ano , Testosterona/sangue , Animais , Meio Ambiente , Feminino , Oviparidade , Oviposição , Fotoperíodo , Água do Mar , Temperatura
15.
Gen Comp Endocrinol ; 156(2): 285-97, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-18342314

RESUMO

The Senegalese sole (Solea senegalensis) is a high value market flatfish, which aquaculture is compromised by severe reproductive problems; these are mostly found in soles hatched and raised in captivity (F1 generation). To gain knowledge on the reproductive dysfunctions observed in cultured (F1) Senegalese sole, this work aimed at developing a specific vitellogenin (VTG) ELISA, for the measurement of plasma VTG levels in this species. Profiles of VTG were correlated with those of sexual steroids and spawning performance of an F1 broodstock, during three consecutive years. The Senegalese sole VTG (ssVTG) was purified by precipitation with MgCl(2)-EDTA and anion-exchange chromatography and showed a molecular mass of 172 kDa, by SDS-PAGE. Specific antibodies were obtained and used to develop a competitive ELISA, which had a sensitivity of 3.6 ng ml(-1), and inter- and intra-assay coefficients of variation of 9.5% (n=29) and 6.7% (n=12), respectively. Annual profiles of plasma VTG showed a major peak at pre-spawning, and a second minor rise around autumn, which mirrored plasma profiles of both estradiol (E(2)) and testosterone (T) levels. Spontaneous spawning occurred every year in the spring season, but no fertilized eggs were obtained. In conclusion, this study described, for the first time, the purification and development of a sensitive and specific ELISA for Senegalese sole VTG. The endocrine and spawning data suggested that F1 female broodstock showed normal VTG and steroid releasing profiles in captivity with occurrence of spontaneous spawning, but no fertilization of the eggs was recorded.


Assuntos
Aquicultura , Linguados/fisiologia , Comportamento Sexual Animal/fisiologia , Esteroides/sangue , Vitelogeninas/sangue , Animais , Western Blotting , Cromatografia por Troca Iônica , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Estradiol/sangue , Feminino , Hormônios Esteroides Gonadais/sangue , Masculino , Ovário/crescimento & desenvolvimento , Reprodução/efeitos dos fármacos , Estações do Ano , Maturidade Sexual , Testosterona/sangue , Vitelogeninas/biossíntese
16.
Environ Health Perspect ; 115 Suppl 1: 115-21, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18174959

RESUMO

BACKGROUND: The potential impact of natural and synthetic estrogens on aquatic ecosystems has attracted considerable attention because it is currently accepted that their joint effects are more severe when they are present in mixtures. Although it is well-known that they occur as mixtures in the marine environment, there is little information about the combined effects of estrogenic chemicals on marine biota. OBJECTIVE: In 14-day tests with juvenile sea bass, we analyzed singly and in combination the estrogenic activity of estradiol (E(2)), ethynylestradiol (EE(2)), and bisphenol A (BPA) using vitellogenin induction as an end point. METHODS: Fish were exposed to each compound, and on the basis of these concentration-response data, we predicted mixture effects by applying the model of concentration addition. The mixtures were tested using a fixed-ratio design, and the resulting mixture effects were compared to the predictions. RESULTS: EE(2) was the most potent steroid, with an EC(50) (median effective concentration) of 0.029 microg/L, 3.6 times more potent than E(2) (EC(50) = 0.104 microg/L); BPA was the least potent chemical, with an EC(50) of 77.94 microg/L. The comparative assessment yielded a good agreement between observed and predicted mixture effects. CONCLUSIONS: This study demonstrates the potential hazard of these compounds to seawater life by their ability to act together in an additive manner. It provides evidence that concentration addition can be used as a predictive tool for assessing the combined effects of estrogenic chemicals in marine ecosystems.


Assuntos
Estrogênios/toxicidade , Vitelogeninas/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Bass , Compostos Benzidrílicos , Relação Dose-Resposta a Droga , Interações Medicamentosas , Monitoramento Ambiental/métodos , Estradiol/administração & dosagem , Estradiol/toxicidade , Estrogênios/administração & dosagem , Etinilestradiol/toxicidade , Fenóis/administração & dosagem , Fenóis/toxicidade , Medição de Risco , Vitelogeninas/biossíntese , Poluentes Químicos da Água/administração & dosagem
17.
Biol Reprod ; 70(5): 1380-91, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-14724132

RESUMO

A full-length cDNA encoding a GnRH receptor (GnRH-R) has been obtained from the pituitary of the European sea bass, Dicentrarchus labrax. The complete cDNA is 1814 base pairs (bp) in length and encodes a protein of 416 amino acids. The 5' UTR and 3' UTR are 239 bp and 324 bp in size, respectively. The expression sites of this GnRH-R were studied in the brain and pituitary of sea bass by means of in situ hybridization. A quantitative analysis of the expression of the GnRH-R gene along the reproductive cycle was also performed. The GnRH-R brain expression was especially relevant in the ventral telencephalon and rostral preoptic area. Some GnRH-R messenger-expressing cells were also evident in the dorsal telencephalon, caudal preoptic area, ventral thalamus, and periventricular hypothalamus. A conspicuous and specific GnRH-R expression was detected in the pineal gland. The highest expression of the GnRH-R gene was observed in the proximal pars distalis of the pituitary. This expression was evident in all LH cells and some FSH cells but not in somatotrophs. In the pituitary, the quantitative analysis revealed a higher expression of GnRH-R gene during late vitellogenesis in comparison with maturation, spawning, and postspawning/resting periods. However, in the brain, the highest GnRH-R expression was evident at spawning or postspawning/ resting periods. These results suggest that the expression of this GnRH-R is regulated in a different manner in the brain and the pituitary of sea bass.


Assuntos
Bass/metabolismo , Encéfalo/metabolismo , Hipófise/metabolismo , Receptores LHRH/genética , Receptores LHRH/metabolismo , Reprodução/fisiologia , Sequência de Aminoácidos , Animais , DNA Complementar , Feminino , Hibridização In Situ , Dados de Sequência Molecular , RNA Mensageiro/metabolismo , Estações do Ano , Distribuição Tecidual
18.
Gen Comp Endocrinol ; 133(2): 216-32, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12928011

RESUMO

Reproduction is controlled by two pituitary gonadotropin hormones, follicle-stimulating hormone (FSH) and luteinizing hormone (LH). This study reports the cloning, sequence analysis, and gene expression of gonadotropin (GTH) subunits from the European sea bass (Dicentrarchus labrax). The GTH subunits were cloned from a sea bass brain-pituitary cDNA library. The nucleotide sequences of the common alpha, the FSHbeta, and the LHbeta subunit cDNAs were 625, 521, and 591 base pair (bp) long, respectively, encoding for mature peptides of 94, 105, and 115 amino acids (aa), respectively. Sequence analysis showed that sea bass FSHbeta is more similar to higher vertebrate FSHbeta's (35-37%) than to LHbeta's (26-30%), whereas sea bass LHbeta is more similar to LHbeta's (40-53%) than to FSHbeta's (26-41%). Phylogenetic analysis of fish GTH sequences grouped the beta subunits into two groups, FSH and LH, distributed into four classes, corresponding to the accepted divisions of Elopomorphs, Ostariophysis, Salmonids, and Percomorphs. A dot-blot technique was developed to analyze GTH pituitary mRNA levels during the reproductive cycle of male sea bass. From October (initiation of gametogenesis) to February (spermiation), the expression of all three subunits in the pituitary increased in parallel, concomitantly with the gonadosomatic index (GSI) and the accumulation of LH protein in the pituitary, all values declining sharply at post-spermiation. This study demonstrates that the pituitary of sea bass contains two gonadotropin hormones and that both gonadotropins are probably involved in the control of gametogenesis, gamete maturation, and spermiation.


Assuntos
Bass/genética , Subunidade beta do Hormônio Folículoestimulante/genética , Subunidade alfa de Hormônios Glicoproteicos/genética , Hormônio Luteinizante Subunidade beta/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , Feminino , Subunidade beta do Hormônio Folículoestimulante/química , Subunidade alfa de Hormônios Glicoproteicos/química , Hormônio Luteinizante Subunidade beta/química , Masculino , Dados de Sequência Molecular , Filogenia , Hipófise/química , RNA Mensageiro/análise , Reprodução , Estações do Ano , Alinhamento de Sequência
19.
Artigo em Inglês | MEDLINE | ID: mdl-11997211

RESUMO

The secretion of gonadotropins, the key reproductive hormones in vertebrates, is controlled from the brain by the gonadotropin-releasing hormone (GnRH), but also by complex steroid feedback mechanisms. In this study, after the recent cloning of the three gonadotropin subunits of sea bass (Dicentrarchus labrax), we aimed at investigating the effects of GnRH and sexual steroids on pituitary gonadotropin mRNA levels, in this valuable aquaculture fish species. Implantation of sea bass, in the period of sexual resting, for 12 days with estradiol (E2), testosterone (T) or the non-aromatizable androgen dihydrotestosterone (DHT), almost suppressed basal expression of FSHbeta (four to 15-fold inhibition from control levels), while slightly increasing that of alpha (1.5-fold) and LHbeta (approx. twofold) subunits. Further injection with a GnRH analogue (15 microg/kg BW; [D-Ala6, Pro9-Net]-mGnRH), had no effect on FSHbeta mRNA levels, but stimulated (twofold) pituitary alpha and LHbeta mRNA levels in sham- and T-implanted fish, and slightly in E2- and DHT-implanted fish (approx. 1.5-fold). The GnRHa injection, as expected, elevated plasma LH levels with a parallel decrease on LH pituitary content, with no differences between implanted fish. In conclusion, high circulating steroid levels seems to exert different action on gonadotropin secretion, inhibiting FSH while stimulating LH synthesis. In these experimental conditions, the GnRHa stimulate LH synthesis and release, but have no effect on FSH synthesis.


Assuntos
Hormônio Foliculoestimulante/biossíntese , Regulação da Expressão Gênica , Hormônio Liberador de Gonadotropina/biossíntese , Hormônio Luteinizante/biossíntese , Hipófise/metabolismo , Animais , Bass , Feminino , Peixes , Masculino , RNA/metabolismo , RNA Mensageiro/metabolismo
20.
J Comp Neurol ; 446(2): 95-113, 2002 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-11932929

RESUMO

The distribution of the cells expressing three prepro-gonadotrophin-releasing hormones (GnRH), corresponding to salmon GnRH (sGnRH), seabream GnRH (sbGnRH), and chicken GnRH-II (cGnRH-II) forms, was studied in the brain and pituitary of the sea bass (Dicentrarchus labrax) by using immunohistochemistry. To circumvent the cross-reactivity problems of antibodies raised to GnRH decapeptides, we used specific antibodies generated against the different sea bass GnRH-associated peptides (GAP): salmon GAP (sGAP), seabream GAP (sbGAP), and chicken-II GAP (cIIGAP). The salmon GAP immunostaining was mostly detected in terminal nerve neurons but also in ventral telencephalic and preoptic perikarya. Salmon GAP-immunoreactive (ir) fibers were observed mainly in the forebrain, although sGAP-ir projections were also evident in the optic tectum, mesencephalic tegmentum, and ventral rhombencephalon. The pituitary only receives a few sGAP-ir fibers. The seabream GAP-ir cells were mainly detected in the preoptic area. Nevertheless, sbGAP-ir neurons were also found in olfactory bulbs, ventral telencephalon, and ventrolateral hypothalamus. The sbGAP-ir fibers were only observed in the ventral forebrain, innervating strongly the pituitary gland. Finally, chicken-II GAP immunoreactivity was only detected in large synencephalic cells, which are the origin of a profuse innervation reaching the telencephalon, preoptic area, hypothalamus, thalamus, pretectum, posterior tuberculum, mesencephalic tectum and tegmentum, cerebellum, and rhombencephalon. However, no cIIGAP-ir fibers were detected in the hypophysis. These results corroborate the overlapping of sGAP- and sbGAP-expressing cells in the forebrain of the sea bass, and provide, for the first time, unambiguous information on the distribution of projections of the three different GnRH forms expressed in the brain of a single species.


Assuntos
Bass/metabolismo , Química Encefálica , Hormônio Liberador de Gonadotropina/análogos & derivados , Hormônio Liberador de Gonadotropina/análise , Hipófise/química , Animais , Galinhas , Feminino , Hormônio Liberador de Gonadotropina/imunologia , Imuno-Histoquímica , Masculino , Precursores de Proteínas/análise , Precursores de Proteínas/imunologia , Salmão , Dourada , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...