Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
R Soc Open Sci ; 11(5): 231229, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38721132

RESUMO

4,6-Bis(3,5-dimethyl-1H-pyrazol-1-yl)-N-phenyl-1,3,5-triazin-2-amine (PTA-1), N-(4-bromophenyl)-4,6-bis(3,5-dimethyl-1H-pyrazol-1-yl)-1,3,5-triazin-2-amine (PTA-2) and 4,6-bis(3,5-dimethyl-1H-pyrazol-1-yl)-N-(4-methoxyphenyl)-1,3,5-triazin-2-amine (PTA-3) were synthesized and characterized. Their corrosion inhibition of carbon C-steel in 0.25 M H2SO4 was studied by electrochemical impedance. The inhibition efficiency (IE%) of triazine was superior due to the cumulative inhibition of triazine core structure and pyrazole motif. Potentiodynamic polarizations suggested that s-triazine derivatives behave as mixed type inhibitors. The IE% values were 96.5% and 93.4% at 120 ppm for inhibitor PTA-2 and PTA-3 bearing -Br and -OCH3 groups on aniline, respectively. While PTA-1 without an electron donating group showed only 79.0% inhibition at 175 ppm. The adsorption of triazine derivatives followed Langmuir and Frumkin models. The values of adsorption equilibrium constant K°ads and free energy change ΔG°ads revealed that adsorption of inhibitor onto steel surface was favoured. A corrosion inhibition mechanism was proposed suggesting the presence of physical and chemical interactions. Density functional theory computational investigation corroborated nicely with the experimental results. Monte Carlo simulation revealed that the energy associated with the metal/adsorbate arrangement dE ads/dN i, for both forms of PTA-2 and PTA-3 with electron donating groups (-439.73 and -436.62 kcal mol-1) is higher than that of PTA-1 molecule (-428.73 kcal mol-1). This aligned with experimental inhibition efficiency results.

2.
Molecules ; 27(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36364076

RESUMO

The corrosion inhibition effect of the three extracts from Harmal roots (HRE), leaves (HLE), and flowers (HFE) were studied for carbon steel corrosion inhibition in 0.25 M H2SO4 solution. The electrochemical impedance study indicated that the three types of extracts decreased corrosion effectively through a charge transfer mechanism. Harmal roots and leaf extracts showed inhibition values of 94.1% and 94.2%, while it was 88.7% for Harmal flower extract at the inhibitor concentration of 82.6 ppm. Potentiodynamic polarization data revealed that Harmal extracts acted through predominant cathodic type inhibition. Both the corrosion current density and corrosion rate decreased significantly in the presence of Harmal extracts compared to blank solution. The corrosion rate (mpy) value was 63.3, 86.1, and 180.7 for HRE, HLE, and HFE, respectively. The adsorption-free energy change ΔGads (kJ·mol-1) values calculated from the Langmuir adsorption isotherm plots were for HRE (-35.08), HLE (-33.17), and HFE (-33.12). Thus, corrosion inhibition occurred due to the adsorption of Harmal extract on the carbon steel surface via the chemisorption mechanism. Moreover, a computational investigation using B3LYP/6-311G++(d,p) basis set in both gaseous and aqueous phases was performed for the major alkaloids (1-8) present in the Harmal extract.


Assuntos
Carbono , Aço , Corrosão , Modelos Teóricos , Extratos Vegetais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...