Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Med Imaging ; 43(1): 28-38, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37342956

RESUMO

Grating-based X-ray phase-contrast and in particular dark-field radiography are promising new imaging modalities for medical applications. Currently, the potential advantage of dark-field imaging in early-stage diagnosis of pulmonary diseases in humans is being investigated. These studies make use of a comparatively large scanning interferometer at short acquisition times, which comes at the expense of a significantly reduced mechanical stability as compared to tabletop laboratory setups. Vibrations create random fluctuations of the grating alignment, causing artifacts in the resulting images. Here, we describe a novel maximum likelihood method for estimating this motion, thereby preventing these artifacts. It is tailored to scanning setups and does not require any sample-free areas. Unlike any previously described method, it accounts for motion in between as well as during exposures.

3.
IEEE Trans Med Imaging ; 41(4): 895-902, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34748485

RESUMO

Dark-field radiography of the human chest is a promising novel imaging technique with the potential of becoming a valuable tool for the early diagnosis of chronic obstructive pulmonary disease and other diseases of the lung. The large field-of-view needed for clinical purposes could recently be achieved by a scanning system. While this approach overcomes the limited availability of large area grating structures, it also results in a prolonged image acquisition time, leading to concomitant motion artifacts caused by intrathoracic movements (e.g. the heartbeat). Here we report on a motion artifact reduction algorithm for a dark-field X-ray scanning system, and its successful evaluation in a simulated chest phantom and human in vivo chest X-ray dark-field data. By partitioning the acquired data into virtual scans with shortened acquisition time, such motion artifacts may be reduced or even fully avoided. Our results demonstrate that motion artifacts (e.g. induced by cardiac motion or diaphragmatic movements) can effectively be reduced, thus significantly improving the image quality of dark-field chest radiographs.


Assuntos
Algoritmos , Artefatos , Humanos , Movimento (Física) , Imagens de Fantasmas , Radiografia
4.
Med Phys ; 48(10): 6152-6159, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34314019

RESUMO

PURPOSE: The purpose of this study was to evaluate the dose characteristic for patient examinations at the first clinical X-ray dark-field chest radiography system and to determine whether the effective patient dose is within a clinically acceptable dose range. METHODS: A clinical setup for grating-based dark-field chest radiography was constructed and commissioned, operating at a tube voltage of 70 kVp. Thermoluminescent dosimeter (TLD) measurements were conducted using an anthropomorphic phantom modeling the reference person to obtain a conversion coefficient relating dose area product (DAP) to effective patient dose at the dark-field system. For 92 patients, the DAP values for posterior-anterior measurements were collected at the dark-field system. Using the previously determined conversion coefficient, the effective dose was calculated. RESULTS: A reference person, modeled by an anthropomorphic phantom, receives an effective dose of 35 µSv. For the examined patients, a mean effective dose of 39 µSv was found. CONCLUSIONS: The effective dose at the clinical dark-field radiography system, generating both attenuation and dark-field images, is within the range of reported standard dose values for chest radiography.


Assuntos
Radiometria , Dosimetria Termoluminescente , Humanos , Imagens de Fantasmas , Doses de Radiação , Radiografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...