Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36559939

RESUMO

The performance of vehicular communication technologies changes dynamically according to the application requirements considering data rate, communication ranges, latency, etc. These applications are evolving rapidly and should enhance intelligent transport systems (ITS) such as road safety and automated driving. However, to reach the required quality, these applications need many radio resources to carry the potential traffic load resulting from the environmental perception and data exchanged between the different entities. Therefore, an assessment of vehicular communication technologies' reliability and resilience under these conditions is required to address the multiple challenges of the ITS services. The paper's main contribution is to propose a comprehensive analysis model able to evaluate and compare the performances of ITS technologies according to different constraints related to environment-changing situations. This analysis examines the channel occupancy and provides simulation results which allow the identification of the suitable configurations and the most appropriate technology for a given use case. We also propose a coexistence solution between these technologies based on density-sharing according to the use case requirements and the availability of the technology. Finally, we present the challenge of adaptive configuration in vehicular networks, which helps to provide the optimal structure through road profiles and environment variability (infrastructure, data, etc.). Results show different trade offs and limitations between the considered ITS technologies, which are essential to understand their behaviour in a realistic environment.


Assuntos
Condução de Veículo , Reprodutibilidade dos Testes , Simulação por Computador , Comunicação
2.
Sensors (Basel) ; 22(19)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36236690

RESUMO

To manage a growing number of users and an ever-increasing demand for bandwidth, future 5th Generation (5G) cellular networks will combine different radio access technologies (cellular, satellite, and WiFi, among others) and different types of equipment (pico-cells, femto-cells, small-cells, macro-cells, etc.). Multi-connectivity is an emerging paradigm aiming to leverage this heterogeneous architecture. To achieve this, multi-connectivity proposes to enable UE to simultaneously use component carriers from different and heterogeneous network nodes: base stations, WiFi access points, etc. This could offer many benefits in terms of quality of service, energy efficiency, fairness, mobility, and spectrum and interference management. Therefore, this survey aims to present an overview of multi-connectivity in 5G networks and beyond. To do so, a comprehensive review of existing standards and enabling technologies is proposed. Then, a taxonomy is defined to classify the different elements characterizing multi-connectivity in 5G and future networks. Thereafter, existing research works using multi-connectivity to improve the quality of service, energy efficiency, fairness, mobility management, and spectrum and interference management are analyzed and compared. In addition, lessons common to these different contexts are presented. Finally, open challenges for multi-connectivity in 5G networks and beyond are discussed.


Assuntos
Agricultura , Padrões de Referência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...