Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Polym Mater ; 5(10): 7968-7981, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37854302

RESUMO

The undesired spontaneous deposition and accumulation of matter on surfaces, better known as fouling, is a problematic and often inevitable process plaguing a variety of industries. This detrimental process can be reduced or even prevented by coating surfaces with a dense layer of end-grafted polymer: a polymer brush. Producing such polymer brushes via adsorption presents a very attractive technique, as large surfaces can be coated in a quick and simple manner. Recently, we introduced a simple and scalable two-step adsorption strategy to fabricate block copolymer-based antifouling coatings on hydrophobic surfaces. This two-step approach involved the initial adsorption of hydrophobic-charged diblock copolymer micelles acting as a primer, followed by the complexation of oppositely charged-antifouling diblock copolymers to form the antifouling brush coating. Here, we significantly improve this adsorption-based zipper brush via systematic tuning of various parameters, including pH, salt concentration, and polymer design. This study reveals several key outcomes. First of all, increasing the hydrophobic/hydrophilic block ratio of the anchoring polymeric micelles (i.e., decreasing the hydrophilic corona) promotes adsorption to the surface, resulting in the most densely packed, uniform, and hydrophilic primer layers. Second, around a neutral pH and at a low salt concentration (1 mM), complexation of the weak polyelectrolyte (PE) blocks results in brushes with the best antifouling efficacy. Moreover, by tuning the ratio between these PE blocks, the brush density can be increased, which is also directly correlated to the antifouling performance. Finally, switching to different antifouling blocks can increase the internal density or strengthen the bound hydration layer of the brush, leading to an additional enhancement of the antifouling properties (>99% lysozyme, 87% bovine serum albumin).

2.
ACS Appl Mater Interfaces ; 15(15): 19682-19694, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37016820

RESUMO

Fouling remains a widespread challenge as its nonspecific and uncontrollable character limits the performance of materials and devices in numerous applications. Although many promising antifouling coatings have been developed to reduce or even prevent this undesirable adhesion process, most of them suffer from serious limitations, specifically in scalability. Whereas scalability can be particularly problematic for covalently bound antifouling polymer coatings, replacement by physisorbed systems remains complicated as it often results in less effective, low-density films. In this work, we introduce a two-step adsorption strategy to fabricate high-density block copolymer-based antifouling coatings on hydrophobic surfaces, which exhibit superior properties compared to one-step adsorbed coatings. The obtained hybrid coating manages to effectively suppress the attachment of both lysozyme and bovine serum albumin, which can be explained by its dense and homogeneous surface structure as well as the desired polymer conformation. In addition, the intrinsic reversibility of the adhered complex coacervate core micelles allows for the successful triggered release and regeneration of the hybrid coating, resulting in full recovery of its antifouling properties. The simplicity and reversibility make this a unique and promising antifouling strategy for large-scale underwater applications.

3.
Sensors (Basel) ; 23(3)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36772387

RESUMO

Quartz crystal microbalance with dissipation monitoring (QCM-D) is a well-established technique for studying soft films. It can provide gravimetric as well as nongravimetric information about a film, such as its thickness and mechanical properties. The interpretation of sets of overtone-normalized frequency shifts, ∆f/n, and overtone-normalized shifts in half-bandwidth, ΔΓ/n, provided by QCM-D relies on a model that, in general, contains five independent parameters that are needed to describe film thickness and frequency-dependent viscoelastic properties. Here, we examine how noise inherent in experimental data affects the determination of these parameters. There are certain conditions where noise prevents the reliable determination of film thickness and the loss tangent. On the other hand, we show that there are conditions where it is possible to determine all five parameters. We relate these conditions to the mathematical properties of the model in terms of simple conceptual diagrams that can help users understand the model's behavior. Finally, we present new open source software for QCM-D data analysis written in Python, PyQTM.

4.
Macromolecules ; 55(19): 8795-8807, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36245548

RESUMO

Despite recent developments in controlled polymerization techniques, the straightforward synthesis of block copolymers that feature both strong anionic and charge-neutral segments remains a difficult endeavor. In particular, solubility issues may arise during the direct synthesis of strong amphiphiles and typical postpolymerization deprotection often requires harsh conditions. To overcome these challenges, we employed Cu(0)-mediated reversible deactivation radical polymerization (Cu(0)-RDRP) on a hydrophobic isobutoxy-protected 3-sulfopropyl acrylate. Cu(0)-RDRP enables the rapid synthesis of the polymer, reaching high conversions and low dispersities while using a single solvent system and low amounts of copper species. These macromolecules are straightforward to characterize and can subsequently be deprotected in a mild yet highly efficient fashion to expose their strongly charged nature. Furthermore, a protected sulfonate segment could be grown from a variety of charge-neutral macroinitiators to produce, after the use of the same deprotection chemistry, a library of amphiphilic, double-hydrophilic as well as thermoresponsive block copolymers (BCPs). The ability of these various BCPs to self-assemble in aqueous media was further studied by dynamic light scattering, ζ-potential measurements as well as atomic force and electron microscopy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...