Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Biol ; 227(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38284759

RESUMO

Sessile barnacles feed by sweeping their basket-like cirral fan through the water, intercepting suspended prey. A primary component of the diet of adult barnacles is copepods that are sensitive to fluid disturbances and capable of escaping. How do barnacles manage to capture copepods despite the fluid disturbances they generate? We examined this question by describing the feeding current architecture of 1 cm sized Balanus crenatus using particle image velocimetry, and by studying the trajectories of captured copepods and the escapes of evading copepods. We found that barnacles produce a feeding current that arrives both from behind and the sides of the barnacle. The flow from the sides represents quiescent corridors of low fluid deformation and uninterrupted by the beating cirral fan. Potential prey arriving from behind are likely to encounter the cirral fan and, hence, capture here is highly unlikely. Accordingly, most captured copepods arrived through the quiet corridors, while most copepods arriving from behind managed to escape. Thus, it is the unique feeding flow architecture that allows feeding on evasive prey. We used the Landau-Squire jet as a simple model of the feeding current. For the Reynolds number of our experiments, the model reproduces the main features of the feeding current, including the lateral feeding corridors. Furthermore, the model suggests that smaller barnacle specimens, operating at lower Reynolds numbers, will produce a fore-aft symmetric feeding current without the lateral corridors. This suggests an ontogenetic diet shift from non-evasive prey to inclusion of evasive prey as the barnacle grows.


Assuntos
Copépodes , Thoracica , Animais , Hidrodinâmica , Reologia , Água
2.
PLoS One ; 17(8): e0271823, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35925974

RESUMO

The recent return of Atlantic bluefin tuna to northern Europe following the recovery of the east Atlantic stock has sparked substantial public and scientific interest. This is particularly true for recreational anglers in Denmark, who often consider Atlantic bluefin tuna to be the catch of a lifetime. This attitude has previously sustained a substantial recreational fishery for bluefin tuna with annual tournaments in Denmark, which peaked in the 1950s before the subsequent collapse of the stock during the 1960s. Several scientific tagging programs have recruited recreational anglers in recent years to help catch and release tagged bluefin tuna. The anglers' investment of time and money in the scientific tagging projects indicate that the recreational fishery could recover in the future. However, the economic aspects of a potential future recreational bluefin tuna fishery remain unknown. We surveyed anglers participating in a scientific catch and release bluefin tuna fishery in Denmark across three years (2018-2020) and calculated the total annual expenditures associated with the activities. Additionally, we estimated the magnitude of the negative impact (i.e., incidental mortalities) on the bluefin tuna stock. Our results show that total annual expenditures by the recreational anglers approached 1,439,540€, totaling 4,318,620€ between 2018 and 2020. We found that recreational bluefin tuna anglers had mean annual expenditures directly related to the bluefin tuna fishing between 7,047€ and 2,176€ with an associated mortality impact on the stock of less than 1 tonne annually. By comparing the mortality impact to the expenditures, we estimate that each dead Atlantic bluefin tuna during the three study years generated 398,163€ in mean annual expenditures, equivalent to approximately 1636€ kg-1. Our study demonstrates significant economic expenditures among recreational anglers who target Atlantic bluefin tuna. This provides a clear example of how a recovery of marine natural capital and related ecosystem services can support development in the blue economy.


Assuntos
Pesqueiros , Atum , Animais , Oceano Atlântico , Ecossistema , Europa (Continente) , Gastos em Saúde
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...