Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gait Posture ; 68: 155-160, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30481697

RESUMO

BACKGROUND: Tibial stress fractures are common running related injury and their etiology may include biomechanical factors like impact forces, shock attenuation, lower limb kinematics and how these factors are influenced by intense or prolonged running. Inertial-magnetic measurement units (IMUs) have recently emerged as an alternative to motion capture but their use to date was mostly limited to segmental and joint motion. RESEARCH QUESTION: The present study sought to examine the effects of a prolonged run on shock attenuation, peak tibial and sacral acceleration (PTA, PSA), and lower limb kinematics using IMUs. METHODS: Ten trained male runners (31 +/- 5 yr, 183 +/- 3 cm, 76 +/- 9 kg) performed a twenty-minute prolonged run on an athletic track at estimated lactate threshold speed. Eight IMUs, positioned over the feet, lower and uppers legs, sacrum and sternum, were used to calculate joint kinematics, impact parameters and shock attenuation in the time domain (1-(PSA/PTA)*100). RESULTS: PTA increased while PSA and shock attenuation did not change following the prolonged run. Hip and knee flexion at midstance decreased. Vertical lower leg angle at initial contact did not change. CONCLUSION: By using IMUs, it was shown that a prolonged run at estimated lactate threshold speed had significant effects on kinematics and tibial acceleration parameters. By modifying hip and knee joint kinematics during stance, the body was able to maintain sacral acceleration possibly by shifting from active shock attenuation to more passive mechanisms. SIGNIFICANCE: The present study shows that inertial sensors can be used in outdoor running to measure joint kinematics and kinetic parameters like PTA, PSA and shock attenuation simultaneously. The results of this study show new insights into how the body copes with impact during prolonged running.


Assuntos
Extremidade Inferior/fisiologia , Magnetismo/instrumentação , Amplitude de Movimento Articular/fisiologia , Corrida/fisiologia , Aceleração , Adulto , Fenômenos Biomecânicos , Humanos , Masculino , Adulto Jovem
2.
Front Physiol ; 9: 218, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29623042

RESUMO

Analysis of running mechanics has traditionally been limited to a gait laboratory using either force plates or an instrumented treadmill in combination with a full-body optical motion capture system. With the introduction of inertial motion capture systems, it becomes possible to measure kinematics in any environment. However, kinetic information could not be provided with such technology. Furthermore, numerous body-worn sensors are required for a full-body motion analysis. The aim of this study is to examine the validity of a method to estimate sagittal knee joint angles and vertical ground reaction forces during running using an ambulatory minimal body-worn sensor setup. Two concatenated artificial neural networks were trained (using data from eight healthy subjects) to estimate the kinematics and kinetics of the runners. The first artificial neural network maps the information (orientation and acceleration) of three inertial sensors (placed at the lower legs and pelvis) to lower-body joint angles. The estimated joint angles in combination with measured vertical accelerations are input to a second artificial neural network that estimates vertical ground reaction forces. To validate our approach, estimated joint angles were compared to both inertial and optical references, while kinetic output was compared to measured vertical ground reaction forces from an instrumented treadmill. Performance was evaluated using two scenarios: training and evaluating on a single subject and training on multiple subjects and evaluating on a different subject. The estimated kinematics and kinetics of most subjects show excellent agreement (ρ>0.99) with the reference, for single subject training. Knee flexion/extension angles are estimated with a mean RMSE <5°. Ground reaction forces are estimated with a mean RMSE < 0.27 BW. Additionaly, peak vertical ground reaction force, loading rate and maximal knee flexion during stance were compared, however, no significant differences were found. With multiple subject training the accuracy of estimating discrete and continuous outcomes decreases, however, good agreement (ρ > 0.9) is still achieved for seven of the eight different evaluated subjects. The performance of multiple subject learning depends on the diversity in the training dataset, as differences in accuracy were found for the different evaluated subjects.

3.
J Neuroeng Rehabil ; 14(1): 125, 2017 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-29197402

RESUMO

BACKGROUND: During gait training, physical therapists continuously supervise stroke survivors and provide physical support to their pelvis when they judge that the patient is unable to keep his balance. This paper is the first in providing quantitative data about the corrective forces that therapists use during gait training. It is assumed that changes in the acceleration of a patient's COM are a good predictor for therapeutic balance assistance during the training sessions Therefore, this paper provides a method that predicts the timing of therapeutic balance assistance, based on acceleration data of the sacrum. METHODS: Eight sub-acute stroke survivors and seven therapists were included in this study. Patients were asked to perform straight line walking as well as slalom walking in a conventional training setting. Acceleration of the sacrum was captured by an Inertial Magnetic Measurement Unit. Balance-assisting corrective forces applied by the therapist were collected from two force sensors positioned on both sides of the patient's hips. Measures to characterize the therapeutic balance assistance were the amount of force, duration, impulse and the anatomical plane in which the assistance took place. Based on the acceleration data of the sacrum, an algorithm was developed to predict therapeutic balance assistance. To validate the developed algorithm, the predicted events of balance assistance by the algorithm were compared with the actual provided therapeutic assistance. RESULTS: The algorithm was able to predict the actual therapeutic assistance with a Positive Predictive Value of 87% and a True Positive Rate of 81%. Assistance mainly took place over the medio-lateral axis and corrective forces of about 2% of the patient's body weight (15.9 N (11), median (IQR)) were provided by therapists in this plane. Median duration of balance assistance was 1.1 s (0.6) (median (IQR)) and median impulse was 9.4Ns (8.2) (median (IQR)). Although therapists were specifically instructed to aim for the force sensors on the iliac crest, a different contact location was reported in 22% of the corrections. CONCLUSIONS: This paper presents insights into the behavior of therapists regarding their manual physical assistance during gait training. A quantitative dataset was presented, representing therapeutic balance-assisting force characteristics. Furthermore, an algorithm was developed that predicts events at which therapeutic balance assistance was provided. Prediction scores remain high when different therapists and patients were analyzed with the same algorithm settings. Both the quantitative dataset and the developed algorithm can serve as technical input in the development of (robot-controlled) balance supportive devices.


Assuntos
Transtornos Neurológicos da Marcha/reabilitação , Marcha , Fisioterapeutas , Equilíbrio Postural , Reabilitação do Acidente Vascular Cerebral/métodos , Aceleração , Idoso , Algoritmos , Terapia por Exercício , Feminino , Quadril/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Sacro/fisiologia , Sobreviventes , Caminhada
4.
J Biomech ; 49(14): 3362-3367, 2016 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-27616268

RESUMO

Recent developments in wearable and wireless sensor technology allow for a continuous three dimensional analysis of running mechanics in the sport specific setting. The present study is the first to demonstrate the possibility of analyzing three dimensional (3D) running mechanics continuously, by means of inertial magnetic measurement units, to objectify changes in mechanics over the course of a marathon. Three well trained male distance runners ran a marathon while equipped with inertial magnetic measurement units on trunk, pelvis, upper legs, lower legs and feet to obtain a 3D view of running mechanics and to asses changes in running mechanics over the course of a marathon. Data were continuously recorded during the entire 42.2km (26.2Miles) of the Marathon. Data from the individual sensors were transmitted wirelessly to a receiver, mounted on the handlebar of an accompanying cyclist. Anatomical calibration was performed using both static and dynamic procedures and sensor orientations were thus converted to body segment orientations by means of transformation matrices obtained from the segment calibration. Joint angle (hip, knee and ankle) trajectories as well as center of mass (COM) trajectory and acceleration were derived from the sensor data after segment calibration. Data were collected and repeated measures one way ANOVA׳s, with Tukey post-hoc test, were used to statistically analyze differences between the defined kinematic parameters (max hip angle, peak knee flexion at mid-stance and at mid-swing, ankle angle at initial contact and COM vertical displacement and acceleration), averaged over 100 strides, between the first and the last stages (8 and 40km) of the marathon. Significant changes in running mechanics were witnessed between the first and the last stage of the marathon. This study showed the possibility of performing a 3D kinematic analysis of the running technique, in the sport specific setting, by using inertial magnetic measurement units. For the three runners analyzed, significant changes were observed in running mechanics over the course of a marathon. The present measurement technique therefore allows for more in-depth study of running mechanics outside the laboratory setting.


Assuntos
Fenômenos Magnéticos , Fenômenos Mecânicos , Corrida/fisiologia , Aceleração , Adulto , Fenômenos Biomecânicos , Calibragem , Feminino , Humanos , Articulações/fisiologia , Masculino , Pessoa de Meia-Idade
5.
J Biomed Opt ; 18(12): 126009, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24343440

RESUMO

In the search for improved imaging modalities for detection and diagnosis of breast cancer, a high negative prediction value is also important. Photoacoustic (optoacoustic) imaging is a relatively new technique that has high potential for visualizing breast malignancies, but little is known about the photoacoustic appearance of benign lesions. In this work, we investigate the visibility of benign breast cysts in forward-mode photoacoustic mammography using 1064-nm light, as currently applied in the Twente photoacoustic mammoscope. Results from (Monte Carlo and k-wave) simulations and phantom measurements were used to interpret results from patient measurements. There was a strong agreement among the results from simulations, phantom, and patient measurements. Depending on the absorption contrast between cyst and breast tissue, cysts were visible as either one or two confined high-contrast areas representing the front and the back of the cyst, respectively. This edge enhancement is most likely the consequence of the local sudden change in the absorbed energy density and Grüneisen coefficients. Although the current forward-mode single-wavelength photoacoustic mammoscope cannot always unambiguously discriminate cysts from malignancies, this study reveals specific features of cysts compared to malignancies, which can be exploited for discrimination of the two abnormalities in future modifications of the imager.


Assuntos
Cisto Mamário/patologia , Processamento de Imagem Assistida por Computador/métodos , Mamografia/métodos , Técnicas Fotoacústicas/métodos , Simulação por Computador , Feminino , Humanos , Mamografia/instrumentação , Pessoa de Meia-Idade , Método de Monte Carlo , Imagens de Fantasmas , Técnicas Fotoacústicas/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...