Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Early Hum Dev ; 144: 105040, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32325371

RESUMO

BACKGROUND: Controversy exists regarding the impact of small for gestational age (SGA = birth weight < 10th percentile) status on mortality and major morbidities. AIM: To assess the effects of SGA on mortality and major morbidities in ≤750 gram (g) neonates. STUDY DESIGN: Retrospective (01/2005-12/2017), single center study at a tertiary NICU. SUBJECTS: SGA neonates ≤ 750 g. OUTCOME: Effect of SGA status on mortality and major morbidities. RESULTS: 183 infants were enrolled. 103 (56.3%) were non-SGA (mean gestational age 25 + 1 weeks ±â€¯9.9 days, mean birth weight 662.6 ±â€¯75.2 g), and 80 (43.7%) SGA (mean gestational age 26 + 6 weeks ±â€¯14.0 days, mean birth weight 543.9 ±â€¯114.7 g). Mortality was 24.1% (non-SGA: 30/103 (29.1%), SGA: 14/80 (17.5%); p = 0.08). Univariable logistic regression analysis revealed a significant protective effect of SGA status on pneumothoraces (OR 0.28, 95%-CI [0.11-0.69]), IVH (≥3) (OR 0.38; 95%-CI [0.15-0.67]), and seizures (OR 0.09, 95%-CI [0.01-0.76]), but NEC (≥2a) occurred more frequently in SGA neonates (p = 0.024). Multiple logistic regression analysis found SGA status to negatively influence ROP (≥3) (OR 2.87, 95%-CI [1.14-7.23]) and need for home monitoring (OR 2.38, 95%-CI [1.05-5.41]). Other major morbidities (IVH, PVL, RDS, BPD, NEC, FIP, sepsis, hearing impairment) and mortality rates were not significantly affected, but distinct organ-specific patterns were seen. CONCLUSION: SGA had negative effects on the rate of severe ROP and the need for home monitoring, but other major morbidities as well as mortality rates were not significantly affected. In the future, it will be important to delineate underlying pathophysiological mechanisms that contribute to this pattern.


Assuntos
Mortalidade Infantil , Doenças do Recém-Nascido/epidemiologia , Recém-Nascido Pequeno para a Idade Gestacional , Feminino , Alemanha/epidemiologia , Humanos , Lactente , Recém-Nascido de Baixo Peso , Recém-Nascido , Doenças do Recém-Nascido/mortalidade , Masculino , Morbidade , Gravidez , Retinopatia da Prematuridade/epidemiologia , Estudos Retrospectivos
3.
Elife ; 92020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-32022688

RESUMO

Cerebellar granule cells (GCs) make up the majority of all neurons in the vertebrate brain, but heterogeneities among GCs and potential functional consequences are poorly understood. Here, we identified unexpected gradients in the biophysical properties of GCs in mice. GCs closer to the white matter (inner-zone GCs) had higher firing thresholds and could sustain firing with larger current inputs than GCs closer to the Purkinje cell layer (outer-zone GCs). Dynamic Clamp experiments showed that inner- and outer-zone GCs preferentially respond to high- and low-frequency mossy fiber inputs, respectively, enabling dispersion of the mossy fiber input into its frequency components as performed by a Fourier transformation. Furthermore, inner-zone GCs have faster axonal conduction velocity and elicit faster synaptic potentials in Purkinje cells. Neuronal network modeling revealed that these gradients improve spike-timing precision of Purkinje cells and decrease the number of GCs required to learn spike-sequences. Thus, our study uncovers biophysical gradients in the cerebellar cortex enabling a Fourier-like transformation of mossy fiber inputs.


The timing of movements such as posture, balance and speech are coordinated by a region of the brain called the cerebellum. Although this part of the brain is small, it contains a huge number of tiny nerve cells known as granule cells. These cells make up more than half the nerve cells in the human brain. But why there are so many is not well understood.The cerebellum receives signals from sensory organs, such as the ears and eyes, which are passed on as electrical pulses from nerve to nerve until they reach the granule cells. These electrical pulses can have very different repetition rates, ranging from one pulse to a thousand pulses per second. Previous studies have suggested that granule cells are a uniform population that can detect specific patterns within these electrical pulses. However, this would require granule cells to identify patterns in signals that have a range of different repetition rates, which is difficult for individual nerve cells to do.To investigate if granule cells are indeed a uniform population, Straub, Witter, Eshra, Hoidis et al. measured the electrical properties of granule cells from the cerebellum of mice. This revealed that granule cells have different electrical properties depending on how deep they are within the cerebellum. These differences enabled the granule cells to detect sensory signals that had specific repetition rates: signals that contained lots of repeats per second were relayed by granule cells in the lower layers of the cerebellum, while signals that contained fewer repeats were relayed by granule cells in the outer layers.This ability to separate signals based on their rate of repetition is similar to how digital audio files are compressed into an MP3. Computer simulations suggested that having granule cells that can detect specific rates of repetition improves the storage capacity of the brain.These findings further our understanding of how the cerebellum works and the cellular mechanisms that underlie how humans learn and memorize the timing of movement. This mechanism of separating signals to improve storage capacity may apply to other regions of the brain, such as the hippocampus, where differences between nerve cells have also recently been reported.


Assuntos
Córtex Cerebelar , Neurônios , Animais , Fenômenos Biofísicos/fisiologia , Córtex Cerebelar/citologia , Córtex Cerebelar/metabolismo , Córtex Cerebelar/fisiologia , Análise de Fourier , Camundongos , Modelos Neurológicos , Fibras Nervosas/metabolismo , Fibras Nervosas/fisiologia , Neurônios/citologia , Neurônios/metabolismo , Neurônios/fisiologia , Células de Purkinje/citologia , Células de Purkinje/metabolismo , Células de Purkinje/fisiologia , Potenciais Sinápticos/fisiologia , Substância Branca/citologia , Substância Branca/metabolismo , Substância Branca/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...