Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695758

RESUMO

Transition-metal dichalcogenides (TMDCs), including MoS2, have great potential in electronics applications. However, achieving low-resistance metal contacts is a challenge that impacts their performance in nanodevices due to strong Fermi-level pinning and the presence of a tunnelling barrier. As a solution, we explore a strategy of inserting monolayers of alkaline-earth sub-pnictide electrenes with a general formula of [M2X]+e- (M = Ca, Sr, Ba; X = N, P, As, Sb) between the TMDC and the metal. These electrenes possess two-dimensional sheets of charge on their surfaces that can be readily donated when interfaced with a TMDC semiconductor, thereby lowering its conduction band below the Fermi level and eliminating the Schottky and tunnelling barriers. In this work, density-functional theory (DFT) calculations were performed for metal/electrene/MoS2 heterojunctions for all stable M2X electrenes and both Au and Cu metals. To identify the material combinations that provide the most effective Ohmic contact, the charge transfer, band structure, and electrostatic potential were computed. Linear correlations were found between the charge donated to the MoS2 and both the electrene surface charge and work function. Overall, Ca2N appears to be the most promising electrene for achieving an Ohmic metal/MoS2 contact due to its high surface charge density.

2.
Nanoscale ; 15(28): 12038-12047, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37403819

RESUMO

Two-dimensional layered electrides are a class of atomically thin materials in which the anion is an excess electron rather than a negatively charged ion. These excess electrons form delocalized sheets of charge surrounding each layer of the material. A well-known example is Ca2N; its identification and characterization has triggered an avalanche of studies aimed at broadening applications of electrides. Ca2N is only one member of the M2X family of materials, with M being an alkaline-earth metal and X belonging to the pnictogen group, which can be exfoliated to form single- or few-layer electrenes. The goal of this study is to systematically investigate the monolayer and bilayer properties for this family of materials. Density-functional calculations reveal linear relationships between surface and interstitial charges, work functions, exfoliation energies, and Ewald energies. Using the Landauer formalism, informed by rigorous electron-phonon scattering calculations, we also investigate the electronic transport characteristics of the monolayer and bilayer electrenes. Our findings indicate that the nitrogen-based electrenes (Ca2N, Sr2N, and Ba2N) are more conductive than their counterparts involving heavier pnictogens. The results of this study highlight underlying periodic trends in electrene properties that can help identify which materials would be best suited for particular applications.

3.
ACS Nano ; 16(12): 21536-21545, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36446079

RESUMO

High drive current is a critical performance parameter in semiconductor devices for high-speed, low-power logic applications or high-efficiency, high-power, high-speed radio frequency (RF) analogue applications. In this work, we demonstrate an In2O3 transistor grown by atomic layer deposition (ALD) at back-end-of-line (BEOL) compatible temperatures with a record high drain current in planar FET, exceeding 10 A/mm, the performance of which is 2-3 times better than all known transistors with semiconductor channels. A high transconductance reaches 4 S/mm, recorded among all transistors with a planar structure. Planar FETs working ballistically or quasi-ballistically are exploited as one of the simplest platforms to investigate the intrinsic transport properties. It is found experimentally and theoretically that a high carrier density and high electron velocity both contribute to this high on-state performance in ALD In2O3 transistors, which is made possible by the high-quality oxide/oxide interface, the metal-like charge-neutrality-level (CNL) alignment, and the high band velocities induced by the low density-of-state (DOS). Experimental Hall, I-V, and split C-V measurements at room temperature confirm a high carrier density of up to 6-7 × 1013 /cm2 and a high velocity of about 107 cm/s, well-supported by density functional theory (DFT) calculations. The simultaneous demonstration of such high carrier concentration and average band velocity is enabled by the exploitation of the ultrafast pulse scheme and heat dissipation engineering.

4.
ACS Nano ; 12(2): 1120-1127, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29361229

RESUMO

Topological insulators (TI) have attracted extensive research effort due to their insulating bulk states but conducting surface states. However, investigation and understanding of thermal transport in topological insulators, particularly the effect of surface states, are lacking. In this work, we studied thickness-dependent in-plane thermal and electrical conductivity of Bi2Te2Se TI thin films. A large enhancement in both thermal and electrical conductivity was observed for films with thicknesses below 20 nm, which is attributed to the surface states and bulk-insulating nature of these films. Moreover, a surface Lorenz number much larger than the Sommerfeld value was found. Systematic transport measurements indicated that the Fermi surface is located near the charge neutrality point (CNP) when the film thickness is below 20 nm. Possible reasons for the large Lorenz number include electrical and thermal current decoupling in the surface state Dirac fluid, and bipolar diffusion transport. A simple computational model indicates that the surface states and bipolar diffusion indeed can lead to enhanced electrical and thermal transport and a large Lorenz number.

5.
Adv Mater ; 30(12): e1705542, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29369423

RESUMO

Thin-film transistors (TFTs) based on multilayer molybdenum diselenide (MoSe2 ) synthesized by modified atmospheric pressure chemical vapor deposition (APCVD) exhibit outstanding photoresponsivity (103.1 A W-1 ), while it is generally believed that optical response of multilayer transition metal dichalcogenides (TMDs) is significantly limited due to their indirect bandgap and inefficient photoexcitation process. Here, the fundamental origin of such a high photoresponsivity in the synthesized multilayer MoSe2 TFTs is sought. A unique structural characteristic of the APCVD-grown MoSe2 is observed, in which interstitial Mo atoms exist between basal planes, unlike usual 2H phase TMDs. Density functional theory calculations and photoinduced transfer characteristics reveal that such interstitial Mo atoms form photoreactive electronic states in the bandgap. Models indicate that huge photoamplification is attributed to trapped holes in subgap states, resulting in a significant photovoltaic effect. In this study, the fundamental origin of high responsivity with synthetic MoSe2 phototransistors is identified, suggesting a novel route to high-performance, multifunctional 2D material devices for future wearable sensor applications.

6.
Nano Lett ; 16(10): 6701-6708, 2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27649304

RESUMO

The Poisson's ratio of a material characterizes its response to uniaxial strain. Materials normally possess a positive Poisson's ratio - they contract laterally when stretched, and expand laterally when compressed. A negative Poisson's ratio is theoretically permissible but has not, with few exceptions of man-made bulk structures, been experimentally observed in any natural materials. Here, we show that the negative Poisson's ratio exists in the low-dimensional natural material black phosphorus and that our experimental observations are consistent with first-principles simulations. Through applying uniaxial strain along armchair direction, we have succeeded in demonstrating a cross-plane interlayer negative Poisson's ratio on black phosphorus for the first time. Meanwhile, our results support the existence of a cross-plane intralayer negative Poisson's ratio in the constituent phosphorene layers under uniaxial deformation along the zigzag axis, which is in line with a previous theoretical prediction. The phenomenon originates from the puckered structure of its in-plane lattice, together with coupled hinge-like bonding configurations.

7.
Nat Commun ; 6: 8572, 2015 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-26472191

RESUMO

Black phosphorus has been revisited recently as a new two-dimensional material showing potential applications in electronics and optoelectronics. Here we report the anisotropic in-plane thermal conductivity of suspended few-layer black phosphorus measured by micro-Raman spectroscopy. The armchair and zigzag thermal conductivities are ∼20 and ∼40 W m(-1) K(-1) for black phosphorus films thicker than 15 nm, respectively, and decrease to ∼10 and ∼20 W m(-1) K(-1) as the film thickness is reduced, exhibiting significant anisotropy. The thermal conductivity anisotropic ratio is found to be ∼2 for thick black phosphorus films and drops to ∼1.5 for the thinnest 9.5-nm-thick film. Theoretical modelling reveals that the observed anisotropy is primarily related to the anisotropic phonon dispersion, whereas the intrinsic phonon scattering rates are found to be similar along the armchair and zigzag directions. Surface scattering in the black phosphorus films is shown to strongly suppress the contribution of long mean-free-path acoustic phonons.

8.
Nano Lett ; 13(11): 5316-22, 2013 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-24164564

RESUMO

A microdevice was used to measure the in-plane thermoelectric properties of suspended bismuth telluride nanoplates from 9 to 25 nm thick. The results reveal a suppressed Seebeck coefficient together with a general trend of decreasing electrical conductivity and thermal conductivity with decreasing thickness. While the electrical conductivity of the nanoplates is still within the range reported for bulk Bi2Te3, the total thermal conductivity for nanoplates less than 20 nm thick is well below the reported bulk range. These results are explained by the presence of surface band bending and diffuse surface scattering of electrons and phonons in the nanoplates, where pronounced n-type surface band bending can yield suppressed and even negative Seebeck coefficient in unintentionally p-type doped nanoplates.

9.
Proc Natl Acad Sci U S A ; 109(47): 19097-102, 2012 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-23129661

RESUMO

A mechanically formed electrical nanocontact between gold and tungsten is a prototypical junction between metals with dissimilar electronic structure. Through atomically characterized nanoindentation experiments and first-principles quantum transport calculations, we find that the ballistic conduction across this intermetallic interface is drastically reduced because of the fundamental mismatch between s wave-like modes of electron conduction in the gold and d wave-like modes in the tungsten. The mechanical formation of the junction introduces defects and disorder, which act as an additional source of conduction losses and increase junction resistance by up to an order of magnitude. These findings apply to nanoelectronics and semiconductor device design. The technique that we use is very broadly applicable to molecular electronics, nanoscale contact mechanics, and scanning tunneling microscopy.

10.
Phys Rev Lett ; 109(26): 266803, 2012 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-23368599

RESUMO

By first principles atomistic analysis we demonstrate how controlled localized doping distributions in nanoscale Si transistors can suppress leakage currents. We consider dopants (B and P atoms) to be randomly confined to a ≈1 nm width doping region in the channel. If this region is located away from the electrodes, roughly 20% of the channel length L, the tunneling leakage is reduced 2× compared to the case of uniform doping and shows little variation. Oppositely, we find the leakage current increases by orders of magnitude and may result in large device variability. We calculate the maximum and minimum conductance ratio that characterizes the tunnel leakage for various values of L. We conclude that doping engineering provides a possible approach to resolve the critical issue of leakage current in nanotransistors.

11.
Nano Lett ; 11(1): 151-5, 2011 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-21155559

RESUMO

We report a first principles study of spin transport under finite bias through a graphene-ferromagnet (FM) interface, where FM = Co(111), Ni(111). The use of Co and Ni electrodes achieves spin efficiencies reaching 80% and 60%, respectively. This large spin filtering results from the materials specific interaction between graphene and the FM which destroys the linear dispersion relation of the graphene bands and leads to an opening of spin-dependent energy gaps of ≈0.4-0.5 eV at the K points. The minority spin band gap resides higher in energy than the majority spin band gap located near E(F), a feature that results in large minority spin dominated currents.

12.
Phys Rev Lett ; 105(21): 217206, 2010 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-21231350

RESUMO

We present theoretical results for the backaction force noise and damping of a mechanical oscillator whose position is measured by a mesoscopic conductor. Our scattering approach is applicable to a wide class of systems; in particular, it may be used to describe point contact position detectors far from the weak tunneling limit. We find that the backaction depends not only on the mechanical modulation of transmission probabilities, but also on the modulation of scattering phases, even in the absence of a magnetic field. We illustrate our general approach with several simple examples, and use it to calculate the backaction for a movable, Au atomic point contact modeled by ab initio density functional theory.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...