Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Neuroscience ; 551: 205-216, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38843988

RESUMO

Here, we explored the impact of prolonged environmental enrichment (EE) on behavioral, neurochemical, and epigenetic changes in the serotonin transporter gene in mice subjected to a two-hit schizophrenia model. The methodology involved administering the viral mimetic PolyI:C to neonatal Swiss mice as a first hit during postnatal days (PND) 5-7, or a sterile saline solution as a control. At PND21, mice were randomly assigned either to standard environment (SE) or EE housing conditions. Between PND35-44, the PolyI:C-treated group was submitted to various unpredictable stressors, constituting the second hit. Behavioral assessments were conducted on PND70, immediately after the final EE exposure. Following the completion of behavioral assessments, we evaluated the expression of proteins in the hippocampus that are indicative of microglial activation, such as Iba-1, as well as related to neurogenesis, including doublecortin (Dcx). We also performed methylation analysis on the serotonin transporter gene (Slc6a4) to investigate alterations in serotonin signaling. The findings revealed that EE for 50 days mitigated sensorimotor gating deficits and working memory impairments in two-hit mice and enhanced their locomotor and exploratory behaviors. EE also normalized the overexpression of hippocampal Iba-1 and increased the expression of hippocampal Dcx. Additionally, we observed hippocampal demethylation of the Slc6a4 gene in the EE-exposed two-hit group, indicating epigenetic reprogramming. These results contribute to the growing body of evidence supporting the protective effects of long-term EE in counteracting behavioral disruptions caused by the two-hit schizophrenia model, pointing to enhanced neurogenesis, diminished microglial activation, and epigenetic modifications of serotonergic pathways as underlying mechanisms.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38386042

RESUMO

Mania is associated with disturbed dopaminergic transmission in frontotemporal regions. D-amphetamine (AMPH) causes increased extracellular DA levels, considered an acknowledged mania model in rodents. Doxycycline (DOXY) is a second-generation tetracycline with promising neuroprotective properties. Here, we tested the hypothesis that DOXY alone or combined with Lithium (Li) could reverse AMPH-induced mania-like behavioral alterations in mice by the modulation of monoamine levels in brain areas related to mood regulation, as well as cytoprotective and antioxidant effects in hippocampal neurons. Male Swiss mice received AMPH or saline intraperitoneal (IP) injections for 14 days. Between days 8-14, mice receive further IP doses of DOXY, Li, or their combination. For in vitro studies, we exposed hippocampal neurons to DOXY in the presence or absence of AMPH. DOXY alone or combined with Li reversed AMPH-induced risk-taking behavior and hyperlocomotion. DOXY also reversed AMPH-induced hippocampal and striatal hyperdopaminergia. In AMPH-exposed hippocampal neurons, DOXY alone and combined with Li presented cytoprotective and antioxidant effects, while DOXY+Li also increased the expression of phospho-Ser133-CREB. Our results add novel evidence for DOXY's ability to reverse mania-like features while revealing that antidopaminergic activity in some brain areas, such as the hippocampus and striatum, as well as hippocampal cytoprotective effects may account for this drug's antimanic action. This study provides additional rationale for designing clinical trials investigating its potential as a mood stabilizer agent.

3.
Curr Neuropharmacol ; 22(1): 107-122, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36173067

RESUMO

BACKGROUND: Neuropsychiatric disorders, such as mood disorders, schizophrenia, and Alzheimer's disease (AD) and related dementias, are associated to significant morbidity and mortality worldwide. The pathophysiological mechanisms of neuropsychiatric disorders remain to be fully elucidated, which has hampered the development of effective therapies. The Renin Angiotensin System (RAS) is classically viewed as a key regulator of cardiovascular and renal homeostasis. The discovery that RAS components are expressed in the brain pointed out a potential role for this system in central nervous system (CNS) pathologies. The understanding of RAS involvement in the pathogenesis of neuropsychiatric disorders may contribute to identifying novel therapeutic targets. AIMS: We aim to report current experimental and clinical evidence on the role of RAS in physiology and pathophysiology of mood disorders, schizophrenia, AD and related dementias. We also aim to discuss bottlenecks and future perspectives that can foster the development of new related therapeutic strategies. CONCLUSION: The available evidence supports positive therapeutic effects for neuropsychiatric disorders with the inhibition/antagonism of the ACE/Ang II/AT1 receptor axis or the activation of the ACE2/Ang-(1-7)/Mas receptor axis. Most of this evidence comes from pre-clinical studies and clinical studies lag much behind, hampering a potential translation into clinical practice.


Assuntos
Doença de Alzheimer , Sistema Renina-Angiotensina , Humanos , Sistema Renina-Angiotensina/fisiologia , Peptidil Dipeptidase A/metabolismo , Peptidil Dipeptidase A/uso terapêutico , Rim/metabolismo , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Sistema Nervoso Central/metabolismo
5.
BMC Psychiatry ; 23(1): 558, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37532985

RESUMO

BACKGROUND: We explored the relationship between symptoms, cognitive performance, neutrophil-to-lymphocyte ratio (NLR), monocyte-to-lymphocyte ratio (MLR), and platelet-to-lymphocyte ratio (PLR) (three markers of inflammation), and antipsychotic dose (in chlorpromazine units) in male and female patients with schizophrenia. METHODS: We conducted a cross-sectional analysis in patients with schizophrenia of the complete blood count and the results of neuropsychological testing, using the Welch t-test to compare groups and the Pearson test for correlations. RESULTS: We found that the NLR and the PLR are higher among women with schizophrenia when compared with men. In women, the NLR and the PLR correlate positively with antipsychotic drug dose and inversely with a working memory test (Direct Digit Span). Higher doses of antipsychotics are associated with worse working and semantic memory and mental flexibility in the women in our sample. CONCLUSION: Higher doses of antipsychotics were associated with worse working and semantic memory and mental flexibility in women with schizophrenia. No such correlations were present in men, suggesting that, in female patients, cognitive performance deteriorates as the antipsychotic dose is increased, a finding that could be mediated by inflammatory mechanisms, given the demonstrated relationship to biomarkers of inflammation - e.g., the NLR and the PLR. TRIAL REGISTRATION: NCT03788759 (ClinicalTrials.gov).


Assuntos
Antipsicóticos , Esquizofrenia , Feminino , Humanos , Masculino , Antipsicóticos/uso terapêutico , Cognição , Estudos Transversais , Inflamação , Linfócitos , Neutrófilos , Esquizofrenia/tratamento farmacológico
6.
Eur Neuropsychopharmacol ; 73: 82-95, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37148631

RESUMO

Clozapine presents immunoregulatory properties not well understood. To address this issue, we performed this systematic review to evaluate the immune alterations induced by clozapine and its relationship with the drug's clinical response and compare it with other antipsychotics. Our systematic review has selected nineteen studies meeting the inclusion criteria, from which eleven were included in the meta-analysis, totalizing 689 subjects distributed over three different comparisons. The results revealed that clozapine treatment activates the compensatory immune-regulatory system (CIRS) (Hedges's g = +1.049; CI +0.62 - +1.47, p < 0.001) but has no effects on the immune-Inflammatory Response System (IRS) (Hedges's g= -0.27; CI -1.76 - +1.22, p = 0.71), M1 macrophage (Hedges's g= -0.32; CI -1.78 - +1.14, p = 0.65) and Th1 (Hedge's g = 0.86; CI -0.93 - +1.814, p = 0.07) profiles. Comparing clozapine-treated patients with other anti-psychotics-treated, plasma levels of interleukin (IL)-6 were greater in the clozapine group (Hedge's g = 0.75; CI 0.35 - 1.15, p<0.001). In addition, higher IL-6 plasma levels after four weeks of clozapine treatment were related to the development of clozapine-induced fever; however, IL-6 levels recovered to baseline in 6-10 weeks due to an unexplained compensatory mechanism. In conclusion, our results show that clozapine treatment causes a time-dependent mixed immune profile characterized by increased IL-6 levels and CIRS activation, which may contribute to this drug mechanism of action and adverse effects. Future studies must be designed to investigate the relationship between clozapine-induced immune alterations and symptom remission, treatment resistance, and adverse effects, given the importance of this drug for treating resistant schizophrenia.


Assuntos
Antipsicóticos , Clozapina , Esquizofrenia , Humanos , Clozapina/efeitos adversos , Esquizofrenia/tratamento farmacológico , Interleucina-6 , Antipsicóticos/efeitos adversos , Estresse Oxidativo
7.
Mem Inst Oswaldo Cruz ; 118: e220144, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37018795

RESUMO

BACKGROUND: The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants can infect common mice inducing significant pathological lung lesions and inflammatory responses. This substantially mimics coronavirus disease 19 (COVID-19) infection and pathogenesis in humans. OBJECTIVES: To characterise the effects of recombinant SARS-CoV-2 S1 receptor-binding domain (RBD) peptide in murine macrophage and microglial cells' immune activation compared with classical PAMPs in vitro. METHODS: Murine RAW 264.7 macrophages and BV2 microglial cells were exposed to increasing concentrations of the RBD peptide (0.01, 0.05, and 0.1 µg/mL), Lipopolysaccharide (LPS) and Poly(I:C) and evaluated after two and 24 h for significant markers of macrophage activation. We determined the effects of RBD peptide on cell viability, cleaved caspase 3 expressions, and nuclear morphometry analysis. FINDINGS: In RAW cells, RBD peptide was cytotoxic, but not for BV2 cells. RAW cells presented increased arginase activity and IL-10 production; however, BV2 cells expressed iNOS and IL-6 after RBD peptide exposure. In addition, RAW cells increased cleaved-caspase-3, apoptosis, and mitotic catastrophe after RBD peptide stimulation but not BV2 cells. CONCLUSION: RBD peptide exposure has different effects depending on the cell line, exposure time, and concentration. This study brings new evidence about the immunogenic profile of RBD in macrophage and microglial cells, advancing the understanding of SARS-Cov2 immuno- and neuropathology.


Assuntos
COVID-19 , Humanos , Animais , Camundongos , SARS-CoV-2 , RNA Viral , Microglia/metabolismo , Anticorpos Antivirais , Proteínas Recombinantes , Macrófagos/metabolismo
8.
Mol Neurobiol ; 60(7): 3650-3663, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36917419

RESUMO

Schizophrenia is a mental disorder with sex bias in disease onset and symptom severity. Recently, it was observed that females present more severe symptoms in the perimenstrual phase of the menstrual cycle. The administration of estrogen also alleviates schizophrenia symptoms. Despite this, little is known about symptom fluctuation over the menstrual cycle and the underlying mechanisms. To address this issue, we worked with the two-hit schizophrenia animal model induced by neonatal exposure to a virus-like particle, Poly I:C, associated with peripubertal unpredictable stress exposure. Prepulse inhibition of the startle reflex (PPI) in male and female mice was considered analogous to human schizophrenia-like behavior. Female mice were studied in the proestrus (high-estrogen estrous cycle phase) and diestrus (low-estrogen phase). Additionally, we evaluated the hippocampal mRNA expression of estrogen synthesis proteins; TSPO and aromatase; and estrogen receptors ERα, ERß, and GPER. We also collected peripheral blood mononuclear cells (PBMCs) from male and female patients with schizophrenia and converted them to induced microglia-like cells (iMGs) to evaluate the expression of GPER. We observed raised hippocampal expression of GPER in two-hit female mice at the proestrus phase without PPI deficits and higher levels of proteins related to estrogen synthesis, TSPO, and aromatase. In contrast, two-hit adult males with PPI deficits presented lower hippocampal mRNA expression of TSPO, aromatase, and GPER. iMGs from male and female patients with schizophrenia showed lower mRNA expression of GPER than controls. Therefore, our results suggest that GPER alterations constitute an underlying mechanism for sex influence in schizophrenia.


Assuntos
Receptores de Estrogênio , Esquizofrenia , Adulto , Humanos , Masculino , Feminino , Animais , Camundongos , Receptores de Estrogênio/metabolismo , Receptor alfa de Estrogênio/metabolismo , Aromatase/metabolismo , Leucócitos Mononucleares/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Estrogênios/farmacologia , RNA Mensageiro , Proteínas de Ligação ao GTP/metabolismo , Receptores de GABA/metabolismo
9.
J Clin Psychopharmacol ; 43(1): 39-45, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36584248

RESUMO

BACKGROUND/PURPOSE: There is evidence for low endogenous antioxidant levels and oxidative imbalance in patients with schizophrenia. A previous open-label study with α-lipoic acid (ALA), a potent antioxidant, improved patients' negative and cognitive symptoms and markers of lipid peroxidation. Here we report the results of a randomized double-blind, placebo-controlled study to verify the response of patients with schizophrenia to adjunctive treatment with ALA (100 mg/d) in a 4-month follow-up. METHODS: We conducted a 16-week, double-blind, placebo-controlled study of ALA at 100 mg/d dosages. We compared negative and positive symptoms, cognitive function, extrapyramidal symptoms, body mass index, and oxidative/inflammatory parameters between placebo and control groups. RESULTS: We found no significant improvement in body mass index, cognition, psychopathology, antipsychotic adverse effects, or oxidative stress and inflammation in the experimental group compared with placebo. The whole group of patients improved in several measures, indicating a strong placebo effect in this population. A surprising finding was a significant decrease in red blood cells, white blood cells, and platelets in the group treated with ALA. CONCLUSIONS: The decrease in red blood cells, white blood cells, and platelet counts requires further investigation and attention when prescribing ALA for patients with schizophrenia.


Assuntos
Antipsicóticos , Esquizofrenia , Ácido Tióctico , Humanos , Esquizofrenia/tratamento farmacológico , Esquizofrenia/diagnóstico , Método Duplo-Cego , Antioxidantes , Antipsicóticos/efeitos adversos , Resultado do Tratamento , Quimioterapia Combinada
10.
Mem. Inst. Oswaldo Cruz ; 118: e220144, 2023. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1430845

RESUMO

BACKGROUND The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants can infect common mice inducing significant pathological lung lesions and inflammatory responses. This substantially mimics coronavirus disease 19 (COVID-19) infection and pathogenesis in humans. OBJECTIVES To characterise the effects of recombinant SARS-CoV-2 S1 receptor-binding domain (RBD) peptide in murine macrophage and microglial cells' immune activation compared with classical PAMPs in vitro. METHODS Murine RAW 264.7 macrophages and BV2 microglial cells were exposed to increasing concentrations of the RBD peptide (0.01, 0.05, and 0.1 µg/mL), Lipopolysaccharide (LPS) and Poly(I:C) and evaluated after two and 24 h for significant markers of macrophage activation. We determined the effects of RBD peptide on cell viability, cleaved caspase 3 expressions, and nuclear morphometry analysis. FINDINGS In RAW cells, RBD peptide was cytotoxic, but not for BV2 cells. RAW cells presented increased arginase activity and IL-10 production; however, BV2 cells expressed iNOS and IL-6 after RBD peptide exposure. In addition, RAW cells increased cleaved-caspase-3, apoptosis, and mitotic catastrophe after RBD peptide stimulation but not BV2 cells. CONCLUSION RBD peptide exposure has different effects depending on the cell line, exposure time, and concentration. This study brings new evidence about the immunogenic profile of RBD in macrophage and microglial cells, advancing the understanding of SARS-Cov2 immuno- and neuropathology.

11.
Adv Exp Med Biol ; 1400: 15-33, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35930223

RESUMO

Schizophrenia is a complex and heterogeneous neurodevelopmental psychiatric disorder characterized by a variety of symptoms classically grouped into three main domains: positive (hallucinations, delusions, and thought disorder) and negative symptoms (social withdrawal, lack of affect) and cognitive dysfunction (attention, working and episodic memory functions, and processing speed). This disorder places an immense emotional and economic pressure on the individual and society-at-large. Although the etiology of schizophrenia is not completely known, it is proposed to involve abnormalities in neurodevelopmental processes and dysregulation in the signaling mediated by several neurotransmitters, such as dopamine, glutamate, and GABA. Preclinical research using animal models are essential in our understanding of disease development and pathology as well as the discovery and advance of novel treatment choices. Here we describe rodent models for studying schizophrenia, including those based on the effects of drugs (pharmacological models), neurodevelopmental disruption, demyelination, and genetic alterations. The advantages and limitations of such models are highlighted. We also discussed the great potential of proteomic technologies in unraveling the molecular mechanism of schizophrenia through animal models.


Assuntos
Esquizofrenia , Animais , Atenção , Modelos Animais de Doenças , Dopamina/química , Humanos , Modelos Animais , Proteômica , Esquizofrenia/diagnóstico
12.
Biochimie ; 201: 79-99, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35931337

RESUMO

Inflammation and an exacerbated immune response are widely accepted contributing mechanisms to the genesis and progression of major neuropsychiatric disorders. However, despite the impressive advances in understanding the neurobiology of these disorders, there is still no approved drug directly linked to the regulation of inflammation or brain immune responses. Importantly, matrix metalloproteinases (MMPs) comprise a group of structurally related endopeptidases primarily involved in remodeling extracellular matrix (ECM). In the central nervous system (CNS), these proteases control synaptic plasticity and strength, patency of the blood-brain barrier, and glia-neuron interactions through cleaved and non-cleaved mediators. Several pieces of evidence have pointed to a complex scenario of MMPs dysregulation triggered by neuroinflammation. Furthermore, major psychiatric disorders' affective symptoms and neurocognitive abnormalities are related to MMPs-mediated ECM changes and neuroglia activation. In the past decade, research efforts have been directed to broad-spectrum MMPs inhibitors with frustrating clinical results. However, in the light of recent advances in combinatorial chemistry and drug design technologies, specific and CNS-oriented MMPs modulators have been proposed as a new frontier of therapy for regulating ECM properties in the CNS. Therefore, here we aim to discuss the state of the art of MMPs and ECM abnormalities in major neuropsychiatric disorders, namely depression, bipolar disorder, and schizophrenia, the possible neuro-immune interactions involved in this complex scenario of MMPs dysregulation and propose these endopeptidases as promising targets for rational drug design.


Assuntos
Metaloproteinases da Matriz , Sinapses , Desenho de Fármacos , Matriz Extracelular , Humanos , Inflamação , Neuroglia
13.
Oxid Med Cell Longev ; 2022: 6906722, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36035219

RESUMO

Anxiety disorders are the most prevalent psychiatric disorders being also a comorbid state of other diseases. We aimed to evaluate the anxiolytic-like effects of carvedilol (CVD), a drug used to treat high blood pressure and heart failure with potent antioxidant effects, in animals exposed to chronic unpredictable stress (CUS). To do this, female Swiss mice were exposed to different stressors for 21 days. Between days 15 and 21, the animals received oral CVD (5 or 10 mg/kg) or the antidepressant desvenlafaxine (DVS 10 mg/kg). On the 22nd day, behavioral tests were conducted to evaluate locomotor activity (open field) and anxiety-like alterations (elevated plus-maze-EPM and hole board-HB tests). After behavioral determinations, the animals were euthanized, and the adrenal gland, blood and brain areas, prefrontal cortex (PFC), and hippocampus were removed for biochemical analysis. CUS reduced the crossings while increased rearing and grooming, an effect reversed by both doses of CVD and DVS. CUS decreased the number of entries and permanence time in the open arms of the EPM, while all treatments reversed this effect. CUS reduced the number of head dips in the HB, an effect reversed by CVD. The CUS reduced weight gain, while only CVD5 reversed this effect. A reduction in the cortical layer size of the adrenal gland was observed in stressed animals, which CVD reversed. Increased myeloperoxidase activity (MPO) and interferon-γ (IFN-γ), as well as reduction of interleukin-4 (IL-4) induced by CUS, were reversed by CVD. DVS and CVD increased IL-6 in both brain areas. In the hippocampus, DVS caused an increase in IFN-γ. Our data show that CVD presents an anxiolytic effect partially associated with immune-inflammatory mechanism regulation.


Assuntos
Ansiolíticos , Doenças Cardiovasculares , Animais , Antioxidantes , Ansiedade , Comportamento Animal , Carvedilol , Feminino , Hipocampo , Humanos , Camundongos
14.
Naunyn Schmiedebergs Arch Pharmacol ; 395(9): 1029-1045, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35665831

RESUMO

We postulated that dimethyl fumarate (DMF) exerts neuroprotective effects against depression-like behaviors through astrocytes and microglia modulation. To ascertain our hypothesis and define the mechanistic pathways involved in effect of DMF on neuroinflammation, we used the depression model induced by chronic unpredictable mild stress (CUMS), in which, the mice were exposed to stressful events for 28 days and from the 14th day they received DMF in the doses of 50 and 100 mg/kg or fluoxetine 10 mg/kg or saline. On the 29th day, the animals were subjected to behavioral tests. Microglia (Iba1) and astrocyte (GFAP) marker expressions were evaluated by immunofluorescence analyzes and the cytokines TNF-α and IL-Iß by immunoenzymatic assay. In addition, computational target prediction, 3D protein structure prediction, and docking calculations were performed with monomethyl fumarate (DMF active metabolite) and the Keap1 and HCAR2 proteins, which suggested that these could be the probable targets related protective effects. CUMS induced anxiety- and depressive-like behaviors, cognitive deficit, decreased GFAP, and increased Iba1, TNF-α, and IL-Iß expression in the hippocampus. These alterations were reversed by DMF. Thus, it is suggested that one of the mechanisms involved in the antidepressant effect of DMF is neuroinflammatory suppression, through the signaling pathway HCAR2/Nrf2. However, more studies must be performed to better understand the molecular mechanisms of this drug.


Assuntos
Fumarato de Dimetilo , Fármacos Neuroprotetores , Animais , Astrócitos , Depressão , Proteína 1 Associada a ECH Semelhante a Kelch , Camundongos , Microglia , Fator 2 Relacionado a NF-E2 , Receptores Acoplados a Proteínas G , Transdução de Sinais , Fator de Necrose Tumoral alfa
15.
Neuroimmunomodulation ; 29(4): 391-401, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35272296

RESUMO

INTRODUCTION: The prenatal/perinatal exposure to infections may trigger neurodevelopmental alterations that lead to neuropsychiatric disorders such as autism spectrum disorder (ASD). Previous evidence points to long-term behavioral consequences, such as autistic-like behaviors in rodents induced by lipopolysaccharide (LPS) pre- and postnatal (PN) exposure during critical neurodevelopmental periods. Additionally, sex influences the prevalence and symptoms of ASD. Despite this, the mechanisms underlying this influence are poorly understood. We aim to study sex influences in behavioral and neurotrophic/inflammatory alterations triggered by LPS neonatal exposure in juvenile mice at an approximate age of ASD diagnosis in humans. METHODS: Swiss male and female mice on PN days 5 and 7 received a single daily injection of 500 µg/kg LPS from Escherichia coli or sterile saline (control group). We conducted behavioral determinations of locomotor activity, repetitive behavior, anxiety-like behavior, social interaction, and working memory in animals on PN25 (equivalent to 3-5 years old of the human). To determine BDNF levels in the prefrontal cortex and hippocampus, we used animals on PN8 (equivalent to a human term infant) and PN25. In addition, we evaluated iba-1 (microglia marker), TNFα, and parvalbumin expression on PN25. RESULTS: Male juvenile mice presented repetitive behavior, anxiety, and working memory deficits. Females showed social impairment and working memory deficits. In the neurochemical analysis, we detected lower BDNF levels in brain areas of female mice that were more evident in juvenile mice. Only LPS-challenged females presented a marked hippocampal expression of the microglial activation marker, iba-1, and increased TNFα levels, accompanied by a lower parvalbumin expression. DISCUSSION/CONCLUSION: Male and female mice presented distinct behavioral alterations. However, LPS-challenged juvenile females showed the most prominent neurobiological alterations related to autism, such as increased microglial activation and parvalbumin impairment. Since these sex-sensitive alterations seem to be age-dependent, a better understanding of changes induced by the exposure to specific risk factors throughout life represents essential targets for developing strategies for autism prevention and precision therapy.


Assuntos
Transtorno do Espectro Autista , Comportamento Animal , Animais , Feminino , Masculino , Camundongos , Gravidez , Transtorno do Espectro Autista/imunologia , Transtorno do Espectro Autista/fisiopatologia , Comportamento Animal/fisiologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Modelos Animais de Doenças , Lipopolissacarídeos/toxicidade , Transtornos da Memória/imunologia , Transtornos da Memória/fisiopatologia , Parvalbuminas/biossíntese , Fator de Necrose Tumoral alfa , Doenças do Sistema Nervoso/imunologia , Doenças do Sistema Nervoso/fisiopatologia , Microglia/imunologia , Fatores Sexuais , Fatores Etários
16.
Metab Brain Dis ; 36(8): 2283-2297, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34491479

RESUMO

The current drug therapy for schizophrenia effectively treats acute psychosis and its recurrence; however, this mental disorder's cognitive and negative symptoms are still poorly controlled. Antipsychotics present important side effects, such as weight gain and extrapyramidal effects. The essential oil of Alpinia zerumbet (EOAZ) leaves presents potential antipsychotic properties that need further preclinical investigation. Here, we determined EAOZ effects in preventing and reversing schizophrenia-like symptoms (positive, negative, and cognitive) induced by ketamine (KET) repeated administration in mice and putative neurobiological mechanisms related to this effect. We conducted the behavioral evaluations of prepulse inhibition of the startle reflex (PPI), social interaction, and working memory (Y-maze task), and verified antioxidant (GSH, nitrite levels), anti-inflammatory [interleukin (IL)-6], and neurotrophic [brain-derived neurotrophic factor (BDNF)] effects of this oil in hippocampal tissue. The atypical antipsychotic olanzapine (OLZ) was used as standard drug therapy. EOAZ, similarly to OLZ, prevented and reversed most KET-induced schizophrenia-like behavioral alterations, i.e., sensorimotor gating deficits and social impairment. EOAZ had a modest effect on the prevention of KET-associated working memory deficit. Compared to OLZ, EOAZ showed a more favorable side effects profile, inducing less cataleptic and weight gain changes. EOAZ efficiently protected the hippocampus against KET-induced oxidative imbalance, IL-6 increments, and BDNF impairment. In conclusion, our data add more mechanistic evidence for the anti-schizophrenia effects of EOAZ, based on its antioxidant, anti-inflammatory, and BDNF up-regulating actions. The absence of significant side effects observed in current antipsychotic drug therapy seems to be an essential benefit of the oil.


Assuntos
Alpinia , Antipsicóticos , Óleos Voláteis , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Fator Neurotrófico Derivado do Encéfalo , Camundongos , Óleos Voláteis/farmacologia , Óleos Voláteis/uso terapêutico , Olanzapina
17.
Ann N Y Acad Sci ; 1502(1): 40-53, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34184281

RESUMO

Maternal separation (MS) is a risk factor for major depressive disorder. Both cancer and depression seem to share a common biological link. Here, we evaluated the progression of melanoma and the underlying mechanisms related to this progression, namely cell proliferation and apoptosis, in adult female mice exposed to MS. Female C57BL/6 mice were exposed to MS for 60 min/day during the first 2 postnatal weeks (here called MS mice) or left undisturbed (here called non-MS mice). Melanoma cells were inoculated subcutaneously into the axillary region of adult animals, and tumor progression was evaluated for 25 days. Adult MS mice presented depressive-like behavior and working memory deficits. MS accelerated murine melanoma growth by mechanisms related to decreased apoptosis and increased cell proliferation rate, such as increased expression of IL-6 and mTOR. MS stimulated eukaryotic elongation factor 2 expression and increased the number of circulating monocytes and DNA damage in peripheral blood leukocytes, an effect associated with oxidative DNA damage. In conclusion, MS accelerated the progression of murine melanoma by mechanisms related to tumor proliferation and apoptosis, revealing a relationship between adverse childhood experiences and cancer progression, particularly melanoma.


Assuntos
Avaliação do Impacto na Saúde , Imunidade , Privação Materna , Melanoma/imunologia , Melanoma/patologia , Animais , Apoptose , Comportamento Animal , Biomarcadores , Proliferação de Células , Dano ao DNA , Modelos Animais de Doenças , Progressão da Doença , Suscetibilidade a Doenças , Feminino , Contagem de Leucócitos , Melanoma/metabolismo , Melanoma Experimental , Camundongos , Neuroimunomodulação , Fatores Sexuais , Estresse Fisiológico
18.
J Affect Disord ; 292: 733-745, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34161892

RESUMO

Doxycycline (DOXY) is a second-generation tetracycline with anti-inflammatory and neuroprotective effects. A proinflammatory profile seems to predict the severity of depressive symptoms. In the present study, we aimed at determining whether the anti-inflammatory action of subantimicrobial-dose doxycycline (SDD) (DOXY, 10mg/kg), alone or combined with the antidepressant escitalopram (ESC), could revert lipopolysaccharide-induced depressive-like alterations in mice. Male Swiss mice received saline or lipopolysaccharide (LPS) for ten consecutive days. From the 6th day of LPS exposure, they were treated with DOXY 10 mg/kg, ESC 4 mg/kg, DOXY 10 mg/kg plus ESC 4 mg/kg (DOXY+ESC), or saline. On the 10th day, we assessed behavioral despair (forced swimming test), anhedonia (sucrose preference test), brain oxidative stress markers, and inflammatory and protective pathways related to depression, such as NF-kB and phospho-CREB. Our results showed that DOXY alone or combined with ESC reduced hippocampal Iba-1 expression and interleukin (IL)-1ß levels. Only DOXY+ESC successfully reversed the LPS-induced increase in NF-kBp65 expression and TNFα levels. DOXY caused a marked increase in the hippocampal expression of phospho-CREB and GSH concentrations. DOXY and DOXY+ESC showed a tendency to modulate the functional status of mitogen-activated kinase p42-44 (Phospho-p44/42 MAPK) and of the phosphorylated form of glycogen synthase kinase 3 beta (GSK3ß), revealing a protective profile against inflammation. In conclusion, SDD, combined with ESC, seems to be a good strategy for reverting inflammatory changes and protecting against depression.


Assuntos
Citalopram , Lipopolissacarídeos , Animais , Citalopram/farmacologia , Depressão/induzido quimicamente , Depressão/tratamento farmacológico , Modelos Animais de Doenças , Doxiciclina , Hipocampo , Masculino , Camundongos
19.
Artigo em Inglês | MEDLINE | ID: mdl-33984421

RESUMO

Schizophrenia is a severe mental disorder with complex etiopathogenesis. Based on its neurodevelopmental features, an animal model induced by "two-hit" based on perinatal immune activation followed by peripubertal unpredictable stress was proposed. Sex influences the immune response, and concerning schizophrenia, it impacts the age of onset and symptoms severity. The neurobiological mechanisms underlying the influence of sex in schizophrenia is poorly understood. Our study aimed to evaluate sex influence on proinflammatory and oxidant alterations in male and female mice exposed to the two-hit model of schizophrenia, and its prevention by candesartan, an angiotensin II type 1 receptor (AT1R) blocker with neuroprotective properties. The two-hit model induced schizophrenia-like behavioral changes in animals of both sexes. Hippocampal microglial activation alongside the increased expression of NF-κB, and proinflammatory cytokines, namely interleukin (IL)-1ß and TNF-α, were observed in male animals. Conversely, females presented increased hippocampal and plasma levels of nitrite and plasma lipid peroxidation. Peripubertal administration of low-dose candesartan (0.3 mg/kg PO) prevented behavioral, hippocampal, and systemic changes in male and female mice. While these results indicate the influence of sex on inflammatory and oxidative changes induced by the two-hit model, candesartan was effective in both males and females. The present study advances the neurobiological mechanisms underlying sex influence in schizophrenia and opens new avenues to prevent this devasting mental disorder.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/administração & dosagem , Benzimidazóis/administração & dosagem , Compostos de Bifenilo/administração & dosagem , Fármacos Neuroprotetores , Receptor Tipo 1 de Angiotensina , Esquizofrenia/induzido quimicamente , Tetrazóis/administração & dosagem , Animais , Modelos Animais de Doenças , Feminino , Hipocampo/efeitos dos fármacos , Interleucina-1beta/metabolismo , Peroxidação de Lipídeos , Masculino , Camundongos , Poli I-C , Gravidez , Receptor Tipo 1 de Angiotensina/efeitos dos fármacos , Fatores Sexuais , Fator de Necrose Tumoral alfa/metabolismo
20.
J Neuroimmune Pharmacol ; 16(2): 213-218, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33534108

RESUMO

The recent outbreak of coronavirus disease 2019 (COVID-19) has gained considerable attention worldwide due to its increased potential to spread and infect the general population. COVID-19 primarily targets the human respiratory epithelium but also has neuro-invasive potential. Indeed, neuropsychiatric manifestations, such as fatigue, febrile seizures, psychiatric symptoms, and delirium, are consistently observed in COVID-19. The neurobiological basis of neuropsychiatric COVID-19 symptoms is not fully understood. However, previous evidence about systemic viral infections pointed to an ongoing neuroinflammatory response to viral antigens and proinflammatory mediators/immune cells from the periphery. Microglia cells mediate the overproduction of inflammatory cytokines, free radicals, and damage signals, culminating with neurotoxic consequences. Semi-synthetic second-generation tetracyclines, including minocycline (MINO) and doxycycline (DOXY), are safe bacteriostatic agents that have remarkable neuroprotective and anti-inflammatory properties. Promising results have been obtained in clinical trials using tetracyclines for major psychiatric disorders, such as schizophrenia and major depression. Tetracyclines can inhibit microglial reactivity and neuroinflammation by inhibiting nuclear factor kappa B (NF-kB) signaling, cyclooxygenase 2, and matrix metalloproteinases (MMPs). This drug class also has a broad profile of activity against bacteria associated with community-based pneumonia, including atypical agents. COVID-19 patients are susceptible to secondary bacterial infections, especially those on invasive ventilation. Therefore, we suggest tetracyclines' repurposing as a potential treatment for COVID-19 neuropsychiatric manifestations. These drugs can represent a valuable multi-modal treatment for COVID-19-associated neuroinflammatory alterations based on their broad antimicrobial profile and neuroinflammation control.


Assuntos
Anti-Inflamatórios/administração & dosagem , Tratamento Farmacológico da COVID-19 , Reposicionamento de Medicamentos/métodos , Transtornos Mentais/tratamento farmacológico , Doenças do Sistema Nervoso/tratamento farmacológico , Tetraciclinas/administração & dosagem , Antivirais/administração & dosagem , COVID-19/epidemiologia , COVID-19/imunologia , Humanos , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/imunologia , Transtornos Mentais/epidemiologia , Transtornos Mentais/imunologia , Doenças do Sistema Nervoso/epidemiologia , Doenças do Sistema Nervoso/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...