Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Integr Biol (Camb) ; 7(9): 987-97, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26158406

RESUMO

Many biological processes are controlled by both deterministic and stochastic influences. However, efforts to model these systems often rely on either purely stochastic or purely rule-based methods. To better understand the balance between stochasticity and determinism in biological processes a computational approach that incorporates both influences may afford additional insight into underlying biological mechanisms that give rise to emergent system properties. We apply a combined approach to the simulation and study of angiogenesis, the growth of new blood vessels from existing networks. This complex multicellular process begins with selection of an initiating endothelial cell, or tip cell, which sprouts from the parent vessels in response to stimulation by exogenous cues. We have constructed an agent-based model of sprouting angiogenesis to evaluate endothelial cell sprout initiation frequency and location, and we have experimentally validated it using high-resolution time-lapse confocal microscopy. ABM simulations were then compared to a Monte Carlo model, revealing that purely stochastic simulations could not generate sprout locations as accurately as the rule-informed agent-based model. These findings support the use of rule-based approaches for modeling the complex mechanisms underlying sprouting angiogenesis over purely stochastic methods.


Assuntos
Capilares/crescimento & desenvolvimento , Comunicação Celular/fisiologia , Corpos Embrioides/citologia , Corpos Embrioides/fisiologia , Modelos Cardiovasculares , Neovascularização Fisiológica/fisiologia , Proteínas Angiogênicas/metabolismo , Animais , Capilares/citologia , Simulação por Computador , Humanos , Modelos Estatísticos
2.
J Signal Transduct ; 2014: 173026, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25371820

RESUMO

TEK tyrosine kinase is primarily expressed on endothelial cells and is most commonly referred to as TIE2. TIE2 is a receptor tyrosine kinase modulated by its ligands, angiopoietins, to regulate the development and remodeling of vascular system. It is also one of the critical pathways associated with tumor angiogenesis and familial venous malformations. Apart from the vascular system, TIE2 signaling is also associated with postnatal hematopoiesis. Despite the involvement of TIE2-angiopoietin system in several diseases, the downstream molecular events of TIE2-angiopoietin signaling are not reported in any pathway repository. Therefore, carrying out a detailed review of published literature, we have documented molecular signaling events mediated by TIE2 in response to angiopoietins and developed a network map of TIE2 signaling. The pathway information is freely available to the scientific community through NetPath, a manually curated resource of signaling pathways. We hope that this pathway resource will provide an in-depth view of TIE2-angiopoietin signaling and will lead to identification of potential therapeutic targets for TIE2-angiopoietin associated disorders.

3.
Br J Cancer ; 97(7): 978-85, 2007 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-17912242

RESUMO

Vascular endothelial growth factor (VEGF) is a major target for the inhibition of tumour vascularisation and the treatment of human cancer. Many tumours produce large quantities of VEGF, and as a result, diagnosis and prognosis of cancer may be predicted by measuring changes in VEGF concentrations in blood. In blood, the VEGF may be located in the plasma, or in the blood-borne cells and formed elements, in particular, platelets and leukocytes. In this study, we collate the measurements of VEGF in platelets, leukocytes, plasma and serum for breast, prostate, colorectal and other cancers. In addition, we analysed the concentration of VEGF in tumour tissue itself, as well as for other tissues in the human body. Although the concentration of VEGF in tumours is high, the size of tumours is small compared to other tissues, in particular, skeletal muscle. Thus, the total quantity of VEGF in tumours and in blood is small compared to the quantity in muscles. This large reservoir of VEGF may have important implications for the treatment of cancer.


Assuntos
Neoplasias/metabolismo , Fator A de Crescimento do Endotélio Vascular/sangue , Ensaio de Imunoadsorção Enzimática , Humanos , Neoplasias/patologia , Distribuição Tecidual , Fator A de Crescimento do Endotélio Vascular/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...