Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(21)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37958682

RESUMO

Needle abscission in balsam fir has been linked to both cold acclimation and changes in lipid composition. The overall objective of this research is to uncover lipid changes in balsam fir during cold acclimation and link those changes with postharvest abscission. Branches were collected monthly from September to December and were assessed for cold tolerance via membrane leakage and chlorophyll fluorescence changes at -5, -15, -25, -35, and -45 °C. Lipids were extracted and analyzed using mass spectrometry while postharvest needle abscission was determined gravimetrically. Cold tolerance and needle retention each significantly (p < 0.001) improved throughout autumn in balsam fir. There were concurrent increases in DGDG, PC, PG, PE, and PA throughout autumn as well as a decrease in MGDG. Those same lipids were strongly related to cold tolerance, though MGDG had the strongest relationship (R2 = 55.0% and 42.7% from membrane injury and chlorophyll fluorescence, respectively). There was a similar, albeit weaker, relationship between MGDG:DGDG and needle retention (R2 = 24.3%). Generally, a decrease in MGDG:DGDG ratio resulted in better cold tolerance and higher needle retention in balsam fir, possibly due to increased membrane stability. This study confirms the degree of cold acclimation in Nova Scotian balsam fir and presents practical significance to industry by identifying the timing of peak needle retention. It is suggested that MGDG:DGDG might be a beneficial tool for screening balsam fir genotypes with higher needle retention characteristics.


Assuntos
Abies , Estações do Ano , Folhas de Planta , Lipídeos , Clorofila , Aclimatação
2.
Plants (Basel) ; 11(10)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35631749

RESUMO

Drought is an abiotic stress that decreases crop photosynthesis, growth, and yield. Ascorbic acid has been used as a seed preconditioning agent to help mitigate drought in some species, but not yet in broccoli (Brassica oleracea var. italica). The objective was to investigate the effect of ascorbic acid on growth, photosynthesis, and related parameters in watered and drought-stressed broccoli seedlings. A 2 × 4 factorial experiment was designed where stress (watered or drought) was the first factor and ascorbic acid preconditioning (untreated, 0 ppm, 1 ppm, or 10 ppm) was the second factor. Positioning within the greenhouse was included as a blocking factor and the experiment was replicated three times. All seedlings were watered for 8 weeks and then half had water withheld for 7 days to impose drought while the other half continued to be watered. Ascorbic acid preconditioning increased shoot dry mass, root dry mass, water use efficiency, and photosynthesis in all seedlings while also increasing chlorophyll, relative water content, and leaf area in droughted seedlings. Ascorbic acid preconditioning also decreased membrane injury in droughted seedlings to the point that membrane injury was not significantly different than the watered control. There was strong evidence to support ascorbic acid as a successful seed preconditioning agent in watered and droughted broccoli.

3.
Front Plant Sci ; 6: 1069, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26635863

RESUMO

Balsam fir (Abies balsamea) trees are commonly used as a specialty horticultural species for Christmas trees and associated greenery in eastern Canada and United States. Postharvest needle abscission has always been a problem, but is becoming an even bigger challenge in recent years presumably due to increased autumn temperatures and earlier harvesting practices. An increased understanding of postharvest abscission physiology in balsam fir may benefit the Christmas tree industry while simultaneously advancing our knowledge in senescence and abscission of conifers in general. Our paper describes the dynamics of needle abscission in balsam fir while identifying key factors that modify abscission patterns. Concepts such as genotypic abscission resistance, nutrition, environmental factors, and postharvest changes in water conductance and hormone evolution are discussed as they relate to our understanding of the balsam fir abscission physiology. Our paper ultimately proposes a pathway for needle abscission via ethylene and also suggests other potential alternative pathways based on our current understanding.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...