Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Aging Neurosci ; 9: 258, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28824419

RESUMO

Synaptic transmission requires intricate coordination of the components involved in processing of incoming signals, formation and stabilization of synaptic machinery, neurotransmission and in all related signaling pathways. Changes to any of these components cause synaptic imbalance and disruption of neuronal circuitry. Extensive studies at the neuromuscular junction (NMJ) have greatly aided in the current understanding of synapses and served to elucidate the underlying physiology as well as associated adaptive and homeostatic processes. The heparan sulfate proteoglycan agrin is a vital component of the NMJ, mediating synaptic formation and maintenance in both brain and muscle, but very little is known about direct control of its expression. Here, we investigated the relationship between agrin and transcription factor early growth response-1 (Egr-1), as Egr-1 regulates the expression of many genes involved in synaptic homeostasis and plasticity. Using chromatin immunoprecipitation (ChIP), cell culture with cell lines derived from brain and muscle, and animal models, we show that Egr-1 binds to the AGRN gene locus and suppresses its expression. When compared with wild type (WT), mice deficient in Egr-1 (Egr-1-/-) display a marked increase in AGRN mRNA and agrin full-length and cleavage fragment protein levels, including the 22 kDa, C-terminal fragment in brain and muscle tissue homogenate. Because agrin is a crucial component of the NMJ, we explored possible physiological implications of the Egr-1-agrin relationship. In the diaphragm, Egr-1-/- mice display increased NMJ motor endplate density, individual area and area of innervation. In addition to increased density, soleus NMJs also display an increase in fragmented and faint endplates in Egr-1-/- vs. WT mice. Moreover, the soleus NMJ electrophysiology of Egr-1-/- mice revealed increased quantal content and motor testing showed decreased movement and limb muscle strength compared with WT. This study provides evidence for the potential involvement of a novel Egr-1-agrin pathway in synaptic homeostatic and compensatory mechanisms at the NMJ. Synaptic homeostasis is greatly affected by the process of aging. These and other data suggest that changes in Egr-1 expression may directly or indirectly promote age-related pathologies.

2.
J Neurochem ; 142(1): 56-73, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28369888

RESUMO

Post-synaptic dendritic spines are structurally composed of actin cytoskeleton, which undergoes dynamic morphological changes to accommodate incoming synaptic activity. Drebrin is an actin-binding protein highly expressed in dendritic spines that serves an important role in regulating spine morphology. Functionally, loss of drebrin directly correlates with deficits in learning and memory, as is the case observed in Alzheimer's disease. Despite these findings, the regulatory factor responsible for drebrin loss remains unclear. Here, we show that early growth response-1 (Egr-1), an inducible zinc finger transcription factor, down-regulates drebrin expression. Chromatin immunoprecipitation analyses identified Egr-1 binding sites upstream of the drebrin start site in neuronal cells. Over-expression of Egr-1 in vitro in primary hippocampal neurons or in vivo in homogenates prepared from the hippocampi of an inducible mouse model of Egr-1 show reduced drebrin mRNA and protein levels. Conversely, increased drebrin was detected in hippocampal samples isolated from Egr-1-deficient brain. These data demonstrate that Egr-1 interacts with the drebrin promoter and negatively regulates drebrin expression. Furthermore, immunocytochemical and Golgi staining analyses revealed reduced drebrin protein and dendritic spine density as well as reduced expression of synaptic markers in in vitro hippocampal neurons over-expressing Egr-1 and in vivo inducible mouse model of Egr-1. In contrast, increased drebrin expression correlated with increased dendritic spine density was detected in samples from Egr-1-deficient mice. These data provide evidence that Egr-1 is a novel regulator of drebrin expression, which is linked to changes in dendritic spine density.


Assuntos
Espinhas Dendríticas/fisiologia , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Neuropeptídeos/biossíntese , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Regulação para Baixo , Proteína 1 de Resposta de Crescimento Precoce/genética , Feminino , Hipocampo/citologia , Hipocampo/crescimento & desenvolvimento , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuropeptídeos/genética , Cultura Primária de Células , Regiões Promotoras Genéticas/genética
3.
PLoS One ; 8(12): e84615, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24367683

RESUMO

b-Amyloid peptide accumulation, tau hyperphosphorylation, and synapse loss are characteristic neuropathological symptoms of Alzheimer's disease (AD). Tau hyperphosphorylation is suggested to inhibit the association of tau with microtubules, making microtubules unstable and causing neurodegeneration. The mechanism of tau phosphorylation in AD brain, therefore, is of considerable significance. Although PHF-tau is phosphorylated at over 40 Ser/Thr sites, Ser(262) phosphorylation was shown to mediate b-amyloid neurotoxicity and formation of toxic tau lesions in the brain. In vitro, PKA is one of the kinases that phosphorylates tau at Ser(262), but the mechanism by which it phosphorylates tau in AD brain is not very clear. 14-3-3z is associated with neurofibrillary tangles and is upregulated in AD brain. In this study, we show that 14-3-3z promotes tau phosphorylation at Ser(262) by PKA in differentiating neurons. When overexpressed in rat hippocampal primary neurons, 14-3-3z causes an increase in Ser(262) phosphorylation, a decrease in the amount of microtubule-bound tau, a reduction in the amount of polymerized microtubules, as well as microtubule instability. More importantly, the level of pre-synaptic protein synaptophysin was significantly reduced. Downregulation of synaptophysin in 14-3-3z overexpressing neurons was mitigated by inhibiting the proteosome, indicating that 14-3-3z promotes proteosomal degradation of synaptophysin. When 14-3-3z overexpressing neurons were treated with the microtubule stabilizing drug taxol, tau Ser(262) phosphorylation decreased and synaptophysin level was restored. Our data demonstrate that overexpression of 14-3-3z accelerates proteosomal turnover of synaptophysin by promoting the destabilization of microtubules. Synaptophysin is involved in synapse formation and neurotransmitter release. Our results suggest that 14-3-3z may cause synaptic pathology by reducing synaptophysin levels in the brains of patients suffering from AD.


Assuntos
Proteínas 14-3-3/metabolismo , Doença de Alzheimer/metabolismo , Regulação da Expressão Gênica/fisiologia , Hipocampo/citologia , Chaperonas Moleculares/metabolismo , Neurônios/metabolismo , Sinaptofisina/metabolismo , Proteínas tau/metabolismo , Análise de Variância , Animais , Clonagem Molecular , Primers do DNA/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Microscopia de Fluorescência , Microtúbulos/efeitos dos fármacos , Paclitaxel/farmacologia , Fosforilação/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Ratos
4.
Biochemistry ; 52(37): 6445-55, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-23962087

RESUMO

Alzheimer's disease (AD) is characterized by the presence of abnormal, straight filaments and paired helical filaments (PHFs) that are coated with amorphous aggregates. When PHFs are treated with alkali, they untwist and form filaments with a ribbonlike morphology. Tau protein is the major component of all of these ultrastructures. 14-3-3ζ is present in NFTs and is significantly upregulated in AD brain. The molecular basis of the association of 14-3-3ζ within NFTs and the pathological significance of its association are not known. In this study, we have found that 14-3-3ζ is copurified and co-immunoprecipitates with tau from NFTs of AD brain extract. In vitro, tau binds to both phosphorylated and nonphosphorylated tau. When incubated with 14-3-3ζ, tau forms amorphous aggregates, single-stranded, straight filaments, ribbonlike filaments, and PHF-like filaments, all of which resemble the corresponding ultrastructures found in AD brain. Immuno-electron microscopy determined that both tau and 14-3-3ζ are present in these ultrastructures and that they are formed in an incubation time-dependent manner. Amorphous aggregates are formed first. As the incubation time increases, the size of amorphous aggregates increases and they are incorporated into single-stranded filaments. Single-stranded filaments laterally associate to form double-stranded, ribbonlike, and PHF-like filaments. Both tau and phosphorylated tau aggregate in a similar manner when they are incubated with 14-3-3ζ. Our data suggest that 14-3-3ζ has a role in the fibrillization of tau in AD brain, and that tau phosphorylation does not affect 14-3-3ζ-induced tau aggregation.


Assuntos
Proteínas 14-3-3/metabolismo , Doença de Alzheimer/patologia , Emaranhados Neurofibrilares/patologia , Proteínas tau/metabolismo , Humanos , Emaranhados Neurofibrilares/ultraestrutura , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...