Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Curr Protoc ; 3(5): e757, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37166238

RESUMO

Genetic manipulation in vivo is a critical method for mechanistically understanding gene function in disease and physiological processes. To facilitate this, embryonic transgenesis in popular animal models like mice has been developed. Compared to the longer, expensive methods of transgenesis, viral vectors, such as adeno-associated virus (AAV), have grown increasingly in popularity due to their relatively low cost and ease of production, translating to an overall greater versatility as a biological tool. In this article, we describe protocols for AAV production and purification for efficient transduction in vivo. Importantly, our method differs from others in application of a streamlined, more cost-effective approach. From this method, as many as 2 × 1013 genome-containing viral particles (vp), or 200 units, can be produced within 3 to 4 weeks, with a minimal cost of $1800 to $2000 for supplies and reagents and <15 hr of personnel time per week. A unit here is defined as 1 × 1011 vp, our standard dose of AAV per animal, injected via tail vein. Therefore, our method provides production and purification of AAV in quantities capable of transducing up to 200 animals. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: AAV production Basic Protocol 2: AAV purification.


Assuntos
Dependovirus , Vetores Genéticos , Camundongos , Animais , Dependovirus/genética , Vetores Genéticos/genética , Técnicas de Transferência de Genes
2.
Circulation ; 147(1): 66-82, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36317534

RESUMO

BACKGROUND: Cardiac hypertrophy increases demands on protein folding, which causes an accumulation of misfolded proteins in the endoplasmic reticulum (ER). These misfolded proteins can be removed by the adaptive retrotranslocation, polyubiquitylation, and a proteasome-mediated degradation process, ER-associated degradation (ERAD), which, as a biological process and rate, has not been studied in vivo. To investigate a role for ERAD in a pathophysiological model, we examined the function of the functional initiator of ERAD, valosin-containing protein-interacting membrane protein (VIMP), positing that VIMP would be adaptive in pathological cardiac hypertrophy in mice. METHODS: We developed a new method involving cardiac myocyte-specific adeno-associated virus serovar 9-mediated expression of the canonical ERAD substrate, TCRα, to measure the rate of ERAD, ie, ERAD flux, in the heart in vivo. Adeno-associated virus serovar 9 was also used to either knock down or overexpress VIMP in the heart. Then mice were subjected to transverse aortic constriction to induce pressure overload-induced cardiac hypertrophy. RESULTS: ERAD flux was slowed in both human heart failure and mice after transverse aortic constriction. Surprisingly, although VIMP adaptively contributes to ERAD in model cell lines, in the heart, VIMP knockdown increased ERAD and ameliorated transverse aortic constriction-induced cardiac hypertrophy. Coordinately, VIMP overexpression exacerbated cardiac hypertrophy, which was dependent on VIMP engaging in ERAD. Mechanistically, we found that the cytosolic protein kinase SGK1 (serum/glucocorticoid regulated kinase 1) is a major driver of pathological cardiac hypertrophy in mice subjected to transverse aortic constriction, and that VIMP knockdown decreased the levels of SGK1, which subsequently decreased cardiac pathology. We went on to show that although it is not an ER protein, and resides outside of the ER, SGK1 is degraded by ERAD in a noncanonical process we call ERAD-Out. Despite never having been in the ER, SGK1 is recognized as an ERAD substrate by the ERAD component DERLIN1, and uniquely in cardiac myocytes, VIMP displaces DERLIN1 from initiating ERAD, which decreased SGK1 degradation and promoted cardiac hypertrophy. CONCLUSIONS: ERAD-Out is a new preferentially favored noncanonical form of ERAD that mediates the degradation of SGK1 in cardiac myocytes, and in so doing is therefore an important determinant of how the heart responds to pathological stimuli, such as pressure overload.


Assuntos
Cardiomegalia , Degradação Associada com o Retículo Endoplasmático , Animais , Humanos , Camundongos , Cardiomegalia/metabolismo , Retículo Endoplasmático/metabolismo , Degradação Associada com o Retículo Endoplasmático/fisiologia , Miócitos Cardíacos/metabolismo , Resposta a Proteínas não Dobradas/fisiologia
3.
Am J Physiol Heart Circ Physiol ; 320(5): H1813-H1821, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33666503

RESUMO

Although peroxisomes have been extensively studied in other cell types, their presence and function have gone virtually unexamined in cardiac myocytes. Here, in neonatal rat ventricular myocytes (NRVM) we showed that several known peroxisomal proteins co-localize to punctate structures with a morphology typical of peroxisomes. Surprisingly, we found that the peroxisomal protein, fatty acyl-CoA reductase 1 (FAR1), was upregulated by pharmacological and pathophysiological ER stress induced by tunicamycin (TM) and simulated ischemia-reperfusion (sI/R), respectively. Moreover, FAR1 induction in NRVM was mediated by the ER stress sensor, activating transcription factor 6 (ATF6). Functionally, FAR1 knockdown reduced myocyte death during oxidative stress induced by either sI/R or hydrogen peroxide (H2O2). Thus, Far1 is an ER stress-inducible gene, which encodes a protein that localizes to peroxisomes of cardiac myocytes, where it reduces myocyte viability during oxidative stress. Since FAR1 is critical for plasmalogen synthesis, these results imply that plasmalogens may exert maladaptive effects on the viability of myocytes exposed to oxidative stress.NEW & NOTEWORTHY The peroxisomal enzyme, FAR1, was shown to be an ER stress- and ATF6-inducible protein that localizes to peroxisomes in cardiac myocytes. FAR1 decreases myocyte viability during oxidative stress.


Assuntos
Fator 6 Ativador da Transcrição/metabolismo , Aldeído Oxirredutases/biossíntese , Estresse do Retículo Endoplasmático , Traumatismo por Reperfusão Miocárdica/enzimologia , Miócitos Cardíacos/enzimologia , Peroxissomos/enzimologia , Fator 6 Ativador da Transcrição/genética , Aldeído Oxirredutases/genética , Animais , Animais Recém-Nascidos , Hipóxia Celular , Sobrevivência Celular , Células Cultivadas , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Indução Enzimática , Peróxido de Hidrogênio/toxicidade , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Estresse Oxidativo , Peroxissomos/efeitos dos fármacos , Peroxissomos/metabolismo , Ratos , Tunicamicina/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...