Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 13(7): 1912-1924, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35308839

RESUMO

We report an organophotocatalytic, N-CH3-selective oxidation of trialkylamines in continuous flow. Based on the 9,10-dicyanoanthracene (DCA) core, a new catalyst (DCAS) was designed with solubilizing groups for flow processing. This allowed O2 to be harnessed as a sustainable oxidant for late-stage photocatalytic N-CH3 oxidations of complex natural products and active pharmaceutical ingredients bearing functional groups not tolerated by previous methods. The organophotocatalytic gas-liquid flow process affords cleaner reactions than in batch mode, in short residence times of 13.5 min and productivities of up to 0.65 g per day. Spectroscopic and computational mechanistic studies showed that catalyst derivatization not only enhanced solubility of the new catalyst compared to poorly-soluble DCA, but profoundly diverted the photocatalytic mechanism from singlet electron transfer (SET) reductive quenching with amines toward energy transfer (EnT) with O2.

2.
Chem Commun (Camb) ; 54(26): 3247-3250, 2018 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-29536067

RESUMO

Through synthesising both candidate diastereomers of a model C1-C28 fragment of the potent cytotoxic marine polyketide hemicalide, an assignment of the relative configuration between the C1-C15 and C16-C26 regions has been achieved. By detailed NMR comparisons with the natural product, the relative stereochemistry between these two 1,6-related stereoclusters is elucidated as 13,18-syn rather than the previously proposed 13,18-anti relationship. A flexible and modular strategy using an advanced C1-C28 ketone fragment 22 is outlined to elucidate the remaining stereochemical features and achieve a total synthesis.

3.
Chem Commun (Camb) ; 52(25): 4632-5, 2016 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-26948938

RESUMO

Using the DP4f GIAO-NMR method, the stereochemistry of hemicalide was computationally analysed, resulting in a reassignment at C18 as supported by improved NMR shift correlations with a model C13-C25 fragment 23. An advanced C16-C28 subunit 6 of this potent anticancer agent was then synthesised with the revised 18,19-syn relationship.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...