Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38854069

RESUMO

Targeted mass spectrometry (MS) methods are powerful tools for selective and sensitive analysis of peptides identified by global discovery experiments. Selected reaction monitoring (SRM) is currently the most widely accepted MS method in the clinic, due to its reliability and analytical performance. However, due to limited throughput and the difficulty in setting up and analyzing large scale assays, SRM and parallel reaction monitoring (PRM) are typically used only for very refined assays of on the order of 100 targets or less. Here we introduce a new MS platform with a quadrupole mass filter, collision cell, linear ion trap architecture that has increased acquisition rates compared to the analogous hardware found in the Orbitrap™ Tribrid™ series instruments. The platform can target more analytes than existing SRM and PRM instruments - in the range of 5000 to 8000 peptides per hour. This capability for high multiplexing is enabled by acquisition rates of 70-100 Hz for peptide applications, and the incorporation of real-time chromatogram alignment that adjusts for retention time drift and enables narrow time scheduled acquisition windows. Finally, we describe a Skyline external software tool that implements the building of targeted methods based on data independent acquisition chromatogram libraries or unscheduled analysis of heavy labeled standards. We show that the platform delivers ~10x lower LOQs than traditional SRM analysis for a highly multiplex assay and also demonstrate how analytical figures of merit change while varying method duration with a constant number of analytes, or by keeping a constant time duration while varying the number of analytes.

2.
bioRxiv ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38895256

RESUMO

The development of targeted assays that monitor biomedically relevant proteins is an important step in bridging discovery experiments to large scale clinical studies. Targeted assays are currently unable to scale to hundreds or thousands of targets. We demonstrate the generation of large-scale assays using a novel hybrid nominal mass instrument. The scale of these assays is achievable with the Stellar™ mass spectrometer through the accommodation of shifting retention times by real-time alignment, while being sensitive and fast enough to handle many concurrent targets. Assays were constructed using precursor information from gas-phase fractionated (GPF) data-independent acquisition (DIA). We demonstrate the ability to schedule methods from an orbitrap and linear ion trap acquired GPF DIA library and compare the quantification of a matrix-matched calibration curve from orbitrap DIA and linear ion trap parallel reaction monitoring (PRM). Two applications of these proposed workflows are shown with a cerebrospinal fluid (CSF) neurodegenerative disease protein PRM assay and with a Mag-Net enriched plasma extracellular vesicle (EV) protein survey PRM assay.

3.
Anal Chem ; 96(19): 7373-7379, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38696819

RESUMO

Cross-linking mass spectrometry (XL-MS) has evolved into a pivotal technique for probing protein interactions. This study describes the implementation of Parallel Accumulation-Serial Fragmentation (PASEF) on timsTOF instruments, enhancing the detection and analysis of protein interactions by XL-MS. Addressing the challenges in XL-MS, such as the interpretation of complex spectra, low abundant cross-linked peptides, and a data acquisition bias, our current study integrates a peptide-centric approach for the analysis of XL-MS data and presents the foundation for integrating data-independent acquisition (DIA) in XL-MS with a vendor-neutral and open-source platform. A novel workflow is described for processing data-dependent acquisition (DDA) of PASEF-derived information. For this, software by Bruker Daltonics is used, enabling the conversion of these data into a format that is compatible with MeroX and Skyline software tools. Our approach significantly improves the identification of cross-linked products from complex mixtures, allowing the XL-MS community to overcome current analytical limitations.


Assuntos
Reagentes de Ligações Cruzadas , Espectrometria de Massas , Software , Fluxo de Trabalho , Reagentes de Ligações Cruzadas/química , Peptídeos/química , Peptídeos/análise , Humanos
4.
bioRxiv ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38645098

RESUMO

A thorough evaluation of the quality, reproducibility, and variability of bottom-up proteomics data is necessary at every stage of a workflow from planning to analysis. We share real-world case studies applying adaptable quality control (QC) measures to assess sample preparation, system function, and quantitative analysis. System suitability samples are repeatedly measured longitudinally with targeted methods, and we share examples where they are used on three instrument platforms to identify severe system failures and track function over months to years. Internal QCs incorporated at protein and peptide-level allow our team to assess sample preparation issues and to differentiate system failures from sample-specific issues. External QC samples prepared alongside our experimental samples are used to verify the consistency and quantitative potential of our results during batch correction and normalization before assessing biological phenotypes. We combine these controls with rapid analysis using Skyline, longitudinal QC metrics using AutoQC, and server-based data deposition using PanoramaWeb. We propose that this integrated approach to QC be used as a starting point for groups to facilitate rapid quality control assessment to ensure that valuable instrument time is used to collect the best quality data possible.

5.
J Proteome Res ; 22(10): 3290-3300, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37683181

RESUMO

We evaluate the quantitative performance of the newly released Asymmetric Track Lossless (Astral) analyzer. Using data-independent acquisition, the Thermo Scientific Orbitrap Astral mass spectrometer quantifies 5 times more peptides per unit time than state-of-the-art Thermo Scientific Orbitrap mass spectrometers, which have long been the gold standard for high-resolution quantitative proteomics. Our results demonstrate that the Orbitrap Astral mass spectrometer can produce high-quality quantitative measurements across a wide dynamic range. We also use a newly developed extracellular vesicle enrichment protocol to reach new depths of coverage in the plasma proteome, quantifying over 5000 plasma proteins in a 60 min gradient with the Orbitrap Astral mass spectrometer.


Assuntos
Peptídeos , Proteômica , Proteômica/métodos , Espectrometria de Massas/métodos , Proteoma/metabolismo , Proteínas Sanguíneas
6.
Cell Rep Methods ; 3(7): 100521, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37533638

RESUMO

Targeted proteomics is widely utilized in clinical proteomics; however, researchers often devote substantial time to manual data interpretation, which hinders the transferability, reproducibility, and scalability of this approach. We introduce DeepMRM, a software package based on deep learning algorithms for object detection developed to minimize manual intervention in targeted proteomics data analysis. DeepMRM was evaluated on internal and public datasets, demonstrating superior accuracy compared with the community standard tool Skyline. To promote widespread adoption, we have incorporated a stand-alone graphical user interface for DeepMRM and integrated its algorithm into the Skyline software package as an external tool.


Assuntos
Proteômica , Software , Reprodutibilidade dos Testes , Espectrometria de Massas , Algoritmos
7.
bioRxiv ; 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37398334

RESUMO

We evaluate the quantitative performance of the newly released Asymmetric Track Lossless (Astral) analyzer. Using data independent acquisition, the Thermo Scientific™ Orbitrap™ Astral™ mass spectrometer quantifies 5 times more peptides per unit time than state-of-the-art Thermo Scientific™ Orbitrap™ mass spectrometers, which have long been the gold standard for high resolution quantitative proteomics. Our results demonstrate that the Orbitrap Astral mass spectrometer can produce high quality quantitative measurements across a wide dynamic range. We also use a newly developed extra-cellular vesicle enrichment protocol to reach new depths of coverage in the plasma proteome, quantifying over 5,000 plasma proteins in a 60-minute gradient with the Orbitrap Astral mass spectrometer.

8.
J Proteome Res ; 22(5): 1466-1482, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37018319

RESUMO

The MSstats R-Bioconductor family of packages is widely used for statistical analyses of quantitative bottom-up mass spectrometry-based proteomic experiments to detect differentially abundant proteins. It is applicable to a variety of experimental designs and data acquisition strategies and is compatible with many data processing tools used to identify and quantify spectral features. In the face of ever-increasing complexities of experiments and data processing strategies, the core package of the family, with the same name MSstats, has undergone a series of substantial updates. Its new version MSstats v4.0 improves the usability, versatility, and accuracy of statistical methodology, and the usage of computational resources. New converters integrate the output of upstream processing tools directly with MSstats, requiring less manual work by the user. The package's statistical models have been updated to a more robust workflow. Finally, MSstats' code has been substantially refactored to improve memory use and computation speed. Here we detail these updates, highlighting methodological differences between the new and old versions. An empirical comparison of MSstats v4.0 to its previous implementations, as well as to the packages MSqRob and DEqMS, on controlled mixtures and biological experiments demonstrated a stronger performance and better usability of MSstats v4.0 as compared to existing methods.


Assuntos
Proteômica , Projetos de Pesquisa , Proteômica/métodos , Software , Espectrometria de Massas/métodos , Cromatografia Líquida/métodos
9.
Nat Protoc ; 17(11): 2415-2430, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35831612

RESUMO

Lipidomics studies suffer from analytical and annotation challenges because of the great structural similarity of many of the lipid species. To improve lipid characterization and annotation capabilities beyond those afforded by traditional mass spectrometry (MS)-based methods, multidimensional separation methods such as those integrating liquid chromatography, ion mobility spectrometry, collision-induced dissociation and MS (LC-IMS-CID-MS) may be used. Although LC-IMS-CID-MS and other multidimensional methods offer valuable hydrophobicity, structural and mass information, the files are also complex and difficult to assess. Thus, the development of software tools to rapidly process and facilitate confident lipid annotations is essential. In this Protocol Extension, we use the freely available, vendor-neutral and open-source software Skyline to process and annotate multidimensional lipidomic data. Although Skyline ( https://skyline.ms/skyline.url ) was established for targeted processing of LC-MS-based proteomics data, it has since been extended such that it can be used to analyze small-molecule data as well as data containing the IMS dimension. This protocol uses Skyline's recently expanded capabilities, including small-molecule spectral libraries, indexed retention time and ion mobility filtering, and provides a step-by-step description for importing data, predicting retention times, validating lipid annotations, exporting results and editing our manually validated 500+ lipid library. Although the time required to complete the steps outlined here varies on the basis of multiple factors such as dataset size and familiarity with Skyline, this protocol takes ~5.5 h to complete when annotations are rigorously verified for maximum confidence.


Assuntos
Espectrometria de Mobilidade Iônica , Lipidômica , Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Lipídeos
10.
Structure ; 30(9): 1269-1284.e6, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35716664

RESUMO

RING-between-RING (RBR) E3 ligases mediate ubiquitin transfer through an obligate E3-ubiquitin thioester intermediate prior to substrate ubiquitination. Although RBRs share a conserved catalytic module, substrate recruitment mechanisms remain enigmatic, and the relevant domains have yet to be identified for any member of the class. Here we characterize the interaction between the auto-inhibited RBR, HHARI (AriH1), and its target protein, 4EHP, using a combination of XL-MS, HDX-MS, NMR, and biochemical studies. The results show that (1) a di-aromatic surface on the catalytic HHARI Rcat domain forms a binding platform for substrates and (2) a phosphomimetic mutation on the auto-inhibitory Ariadne domain of HHARI promotes release and reorientation of Rcat for transthiolation and substrate modification. The findings identify a direct binding interaction between a RING-between-RING ligase and its substrate and suggest a general model for RBR substrate recognition.


Assuntos
Proteínas Culina , Ubiquitina , Domínio Catalítico , Proteínas Culina/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitinação
11.
J Proteome Res ; 21(1): 289-294, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34919405

RESUMO

Skyline Batch is a newly developed Windows forms application that enables the easy and consistent reprocessing of data with Skyline. Skyline has made previous advances in this direction; however, none enable seamless automated reprocessing of local and remote files. Skyline keeps a log of all of the steps that were taken in the document; however, reproducing these steps takes time and allows room for human error. Skyline also has a command-line interface, enabling it to be run from a batch script, but using the program in this way requires expertise in editing these scripts. By formalizing the workflow of a highly used set of batch scripts into an intuitive and powerful user interface, Skyline Batch can reprocess data stored in remote repositories just by opening and running a Skyline Batch configuration file. When run, a Skyline Batch configuration downloads all necessary remote files and then runs a four-step Skyline workflow. By condensing the steps needed to reprocess the data into one file, Skyline Batch gives researchers the opportunity to publish their processing along with their data and other analysis files. These easily run configuration files will greatly increase the transparency and reproducibility of published work. Skyline Batch is freely available at https://skyline.ms/batch.url.


Assuntos
Software , Interface Usuário-Computador , Humanos , Reprodutibilidade dos Testes , Fluxo de Trabalho
12.
J Proteome Res ; 21(1): 232-242, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34874736

RESUMO

The implication of lipid dysregulation in diseases, toxic exposure outcomes, and inflammation has brought great interest to lipidomic studies. However, lipids have proven to be analytically challenging due to their highly isomeric nature and vast concentration ranges in biological matrices. Therefore, multidimensional techniques such as those integrating liquid chromatography, ion mobility spectrometry, collision-induced dissociation, and mass spectrometry (LC-IMS-CID-MS) have been implemented to separate lipid isomers as well as provide structural information and increased identification confidence. These data sets are however extremely large and complex, resulting in challenges for data processing and annotation. Here, we have overcome these challenges by developing sample-specific multidimensional lipid libraries using the freely available software Skyline. Specifically, the human plasma library developed for this work contains over 500 unique lipids and is combined with adapted Skyline functions such as indexed retention time (iRT) for retention time prediction and IMS drift time filtering for enhanced selectivity. For comparison with other studies, this database was used to annotate LC-IMS-CID-MS data from a NIST SRM 1950 extract. The same workflow was then utilized to assess plasma and bronchoalveolar lavage fluid (BALF) samples from patients with varying degrees of smoke inhalation injury to identify lipid-based patient prognostic and diagnostic markers.


Assuntos
Lipidômica , Lesão por Inalação de Fumaça , Cromatografia Líquida , Humanos , Espectrometria de Mobilidade Iônica , Lipídeos
13.
Bioinformatics ; 36(15): 4366-4368, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32467974

RESUMO

SUMMARY: Skyline is a Windows application for targeted mass spectrometry method creation and quantitative data analysis. Like most graphical user interface (GUI) tools, it has a complex user interface with many ways for users to edit their files which makes the task of logging user actions challenging and is the reason why audit logging of every change is not common in GUI tools. We present an object comparison-based approach to audit logging for Skyline that is extensible to other GUI tools. The new audit logging system keeps track of all document modifications made through the GUI or the command line and displays them in an interactive grid. The audit log can also be uploaded and viewed in Panorama, a web repository for Skyline documents that can be configured to only accept documents with a valid audit log, based on embedded hashes to protect log integrity. This makes workflows involving Skyline and Panorama more reproducible. AVAILABILITY AND IMPLEMENTATION: Skyline is freely available at https://skyline.ms. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Software , Espectrometria de Massas , Fluxo de Trabalho
14.
Mol Cell Proteomics ; 19(6): 944-959, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32234965

RESUMO

In bottom-up mass spectrometry-based proteomics, relative protein quantification is often achieved with data-dependent acquisition (DDA), data-independent acquisition (DIA), or selected reaction monitoring (SRM). These workflows quantify proteins by summarizing the abundances of all the spectral features of the protein (e.g. precursor ions, transitions or fragments) in a single value per protein per run. When abundances of some features are inconsistent with the overall protein profile (for technological reasons such as interferences, or for biological reasons such as post-translational modifications), the protein-level summaries and the downstream conclusions are undermined. We propose a statistical approach that automatically detects spectral features with such inconsistent patterns. The detected features can be separately investigated, and if necessary, removed from the data set. We evaluated the proposed approach on a series of benchmark-controlled mixtures and biological investigations with DDA, DIA and SRM data acquisitions. The results demonstrated that it could facilitate and complement manual curation of the data. Moreover, it can improve the estimation accuracy, sensitivity and specificity of detecting differentially abundant proteins, and reproducibility of conclusions across different data processing tools. The approach is implemented as an option in the open-source R-based software MSstats.


Assuntos
Espectrometria de Massas/métodos , Proteínas/análise , Proteômica/métodos , Bases de Dados de Proteínas , Processamento de Proteína Pós-Traducional , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Software
15.
J Proteome Res ; 19(4): 1447-1458, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-31984744

RESUMO

Vendor-independent software tools for quantification of small molecules and metabolites are lacking, especially for targeted analysis workflows. Skyline is a freely available, open-source software tool for targeted quantitative mass spectrometry method development and data processing with a 10 year history supporting six major instrument vendors. Designed initially for proteomics analysis, we describe the expansion of Skyline to data for small molecule analysis, including selected reaction monitoring, high-resolution mass spectrometry, and calibrated quantification. This fundamental expansion of Skyline from a peptide-sequence-centric tool to a molecule-centric tool makes it agnostic to the source of the molecule while retaining Skyline features critical for workflows in both peptide and more general biomolecular research. The data visualization and interrogation features already available in Skyline, such as peak picking, chromatographic alignment, and transition selection, have been adapted to support small molecule data, including metabolomics. Herein, we explain the conceptual workflow for small molecule analysis using Skyline, demonstrate Skyline performance benchmarked against a comparable instrument vendor software tool, and present additional real-world applications. Further, we include step-by-step instructions on using Skyline for small molecule quantitative method development and data analysis on data acquired with a variety of mass spectrometers from multiple instrument vendors.


Assuntos
Metabolômica , Proteômica , Sequência de Aminoácidos , Espectrometria de Massas , Software
16.
Analyst ; 144(11): 3601-3612, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31065629

RESUMO

Porous graphitized carbon (PGC) based chromatography achieves high-resolution separation of glycan structures released from glycoproteins. This approach is especially valuable when resolving structurally similar isomers and for discovery of novel and/or sample-specific glycan structures. However, the implementation of PGC-based separations in glycomics studies has been limited because system-independent retention values have not been established to normalize technical variation. To address this limitation, this study combined the use of hydrolyzed dextran as an internal standard and Skyline software for post-acquisition normalization to reduce retention time and peak area technical variation in PGC-based glycan analyses. This approach allowed assignment of system-independent retention values that are applicable to typical PGC-based glycan separations and supported the construction of a library containing >300 PGC-separated glycan structures with normalized glucose unit (GU) retention values. To enable the automation of this normalization method, a spectral MS/MS library was developed of the dextran ladder, achieving confident discrimination against isomeric glycans. The utility of this approach is demonstrated in two ways. First, to inform the search space for bioinformatically predicted but unobserved glycan structures, predictive models for two structural modifications, core-fucosylation and bisecting GlcNAc, were developed based on the GU library. Second, the applicability of this method for the analysis of complex biological samples is evidenced by the ability to discriminate between cell culture and tissue sample types by the normalized intensity of N-glycan structures alone. Overall, the methods and data described here are expected to support the future development of more automated approaches to glycan identification and quantitation.


Assuntos
Cromatografia Líquida/normas , Glicômica/normas , Polissacarídeos/análise , Espectrometria de Massas em Tandem/normas , Animais , Linhagem Celular Tumoral , Cromatografia Líquida/métodos , Glicômica/métodos , Grafite/química , Células HEK293 , Humanos , Isomerismo , Masculino , Camundongos Endogâmicos BALB C , Polissacarídeos/química , Porosidade , Espectrometria de Massas em Tandem/métodos
17.
J Am Soc Mass Spectrom ; 30(4): 669-684, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30671891

RESUMO

A major goal of proteomics research is the accurate and sensitive identification and quantification of a broad range of proteins within a sample. Data-independent acquisition (DIA) approaches that acquire MS/MS spectra independently of precursor information have been developed to overcome the reproducibility challenges of data-dependent acquisition and the limited breadth of targeted proteomics strategies. Typical DIA implementations use wide MS/MS isolation windows to acquire comprehensive fragment ion data. However, wide isolation windows produce highly chimeric spectra, limiting the achievable sensitivity and accuracy of quantification and identification. Here, we present a DIA strategy in which spectra are collected with overlapping (rather than adjacent or random) windows and then computationally demultiplexed. This approach improves precursor selectivity by nearly a factor of 2, without incurring any loss in mass range, mass resolution, chromatographic resolution, scan speed, or other key acquisition parameters. We demonstrate a 64% improvement in sensitivity and a 17% improvement in peptides detected in a 6-protein bovine mix spiked into a yeast background. To confirm the method's applicability to a realistic biological experiment, we also analyze the regulation of the proteasome in yeast grown in rapamycin and show that DIA experiments with overlapping windows can help elucidate its adaptation toward the degradation of oxidatively damaged proteins. Our integrated computational and experimental DIA strategy is compatible with any DIA-capable instrument. The computational demultiplexing algorithm required to analyze the data has been made available as part of the open-source proteomics software tools Skyline and msconvert (Proteowizard), making it easy to apply as part of standard proteomics workflows. Graphical Abstract.

18.
Nat Commun ; 9(1): 5128, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30510204

RESUMO

Data independent acquisition (DIA) mass spectrometry is a powerful technique that is improving the reproducibility and throughput of proteomics studies. Here, we introduce an experimental workflow that uses this technique to construct chromatogram libraries that capture fragment ion chromatographic peak shape and retention time for every detectable peptide in a proteomics experiment. These coordinates calibrate protein databases or spectrum libraries to a specific mass spectrometer and chromatography setup, facilitating DIA-only pipelines and the reuse of global resource libraries. We also present EncyclopeDIA, a software tool for generating and searching chromatogram libraries, and demonstrate the performance of our workflow by quantifying proteins in human and yeast cells. We find that by exploiting calibrated retention time and fragmentation specificity in chromatogram libraries, EncyclopeDIA can detect 20-25% more peptides from DIA experiments than with data dependent acquisition-based spectrum libraries alone.


Assuntos
Cromatografia Líquida/métodos , Peptídeos/análise , Proteoma/análise , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Algoritmos , Bases de Dados de Proteínas , Células HeLa , Humanos , Reprodutibilidade dos Testes , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/análise
19.
J Am Soc Mass Spectrom ; 29(11): 2182-2188, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30047074

RESUMO

Recent advances in ion mobility spectrometry (IMS) have illustrated its power in determining the structural characteristics of a molecule, especially when coupled with other separations dimensions such as liquid chromatography (LC) and mass spectrometry (MS). However, these three separation techniques together greatly complicate data analyses, making better informatics tools essential for assessing the resulting data. In this manuscript, Skyline was adapted to analyze LC-IMS-CID-MS data from numerous instrument vendor datasets and determine the effect of adding the IMS dimension into the normal LC-MS molecular pipeline. For the initial evaluation, a tryptic digest of bovine serum albumin (BSA) was spiked into a yeast protein digest at seven different concentrations, and Skyline was able to rapidly analyze the MS and CID-MS data for 38 of the BSA peptides. Calibration curves for the precursor and fragment ions were assessed with and without the IMS dimension. In all cases, addition of the IMS dimension removed noise from co-eluting peptides with close m/z values, resulting in calibration curves with greater linearity and lower detection limits. This study presents an important informatics development since to date LC-IMS-CID-MS data from the different instrument vendors is often assessed manually and cannot be analyzed quickly. Because these evaluations require days for the analysis of only a few target molecules in a limited number of samples, it is unfeasible to evaluate hundreds of targets in numerous samples. Thus, this study showcases Skyline's ability to work with the multidimensional LC-IMS-CID-MS data and provide biological and environmental insights rapidly. Graphical Abstract ᅟ.

20.
Cell Syst ; 6(4): 424-443.e7, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29655704

RESUMO

Although the value of proteomics has been demonstrated, cost and scale are typically prohibitive, and gene expression profiling remains dominant for characterizing cellular responses to perturbations. However, high-throughput sentinel assays provide an opportunity for proteomics to contribute at a meaningful scale. We present a systematic library resource (90 drugs × 6 cell lines) of proteomic signatures that measure changes in the reduced-representation phosphoproteome (P100) and changes in epigenetic marks on histones (GCP). A majority of these drugs elicited reproducible signatures, but notable cell line- and assay-specific differences were observed. Using the "connectivity" framework, we compared signatures across cell types and integrated data across assays, including a transcriptional assay (L1000). Consistent connectivity among cell types revealed cellular responses that transcended lineage, and consistent connectivity among assays revealed unexpected associations between drugs. We further leveraged the resource against public data to formulate hypotheses for treatment of multiple myeloma and acute lymphocytic leukemia. This resource is publicly available at https://clue.io/proteomics.


Assuntos
Bases de Dados Factuais , Fosfoproteínas/efeitos dos fármacos , Algoritmos , Linhagem Celular , Cromatografia Líquida , Conjuntos de Dados como Assunto , Regulação da Expressão Gênica , Código das Histonas , Humanos , Espectrometria de Massas , Fenômenos Farmacológicos e Toxicológicos , Fosfoproteínas/metabolismo , Proteômica , Transdução de Sinais , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...