Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Pharmacol ; 181(7): 938-966, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37939796

RESUMO

Pulmonary arterial hypertension (PAH) is a complex disease of multifactorial origin. While registries have demonstrated that women are more susceptible to the disease, females with PAH have superior right ventricle (RV) function and a better prognosis than their male counterparts, a phenomenon referred to as the 'estrogen paradox'. Numerous pre-clinical studies have investigated the involvement of sex hormones in PAH pathobiology, often with conflicting results. However, recent advances suggest that abnormal estrogen synthesis, metabolism and signalling underpin the sexual dimorphism of this disease. Other sex hormones, such as progesterone, testosterone and dehydroepiandrosterone may also play a role. Several non-hormonal factor including sex chromosomes and epigenetics have also been implicated. Though the underlying pathophysiological mechanisms are complex, several compounds that modulate sex hormones levels and signalling are under investigation in PAH patients. Further elucidation of the estrogen paradox will set the stage for the identification of additional therapeutic targets for this disease.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Disfunção Ventricular Direita , Humanos , Masculino , Feminino , Hipertensão Arterial Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/metabolismo , Hormônios Esteroides Gonadais/metabolismo , Hormônios Esteroides Gonadais/uso terapêutico , Estrogênios/metabolismo , Testosterona
2.
Hypertension ; 80(8): 1683-1696, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37254738

RESUMO

BACKGROUND: Notch3 (neurogenic locus notch homolog protein 3) is implicated in vascular diseases, including pulmonary hypertension (PH)/pulmonary arterial hypertension. However, molecular mechanisms remain elusive. We hypothesized increased Notch3 activation induces oxidative and endoplasmic reticulum (ER) stress and downstream redox signaling, associated with procontractile pulmonary artery state, pulmonary vascular dysfunction, and PH development. METHODS: Studies were performed in TgNotch3R169C mice (harboring gain-of-function [GOF] Notch3 mutation) exposed to chronic hypoxia to induce PH, and examined by hemodynamics. Molecular and cellular studies were performed in pulmonary artery smooth muscle cells from pulmonary arterial hypertension patients and in mouse lung. Notch3-regulated genes/proteins, ER stress, ROCK (Rho-associated kinase) expression/activity, Ca2+ transients and generation of reactive oxygen species, and nitric oxide were measured. Pulmonary vascular reactivity was assessed in the presence of fasudil (ROCK inhibitor) and 4-phenylbutyric acid (ER stress inhibitor). RESULTS: Hypoxia induced a more severe PH phenotype in TgNotch3R169C mice versus controls. TgNotch3R169C mice exhibited enhanced Notch3 activation and expression of Notch3 targets Hes Family BHLH Transcription Factor 5 (Hes5), with increased vascular contraction and impaired vasorelaxation that improved with fasudil/4-phenylbutyric acid. Notch3 mutation was associated with increased pulmonary vessel Ca2+ transients, ROCK activation, ER stress, and increased reactive oxygen species generation, with reduced NO generation and blunted sGC (soluble guanylyl cyclase)/cGMP signaling. These effects were ameliorated by N-acetylcysteine. pulmonary artery smooth muscle cells from patients with pulmonary arterial hypertension recapitulated Notch3/Hes5 signaling, ER stress and redox changes observed in PH mice. CONCLUSIONS: Notch3 GOF amplifies vascular dysfunction in hypoxic PH. This involves oxidative and ER stress, and ROCK. We highlight a novel role for Notch3/Hes5-redox signaling and important interplay between ER and oxidative stress in PH.


Assuntos
Hipertensão Pulmonar , Hipertensão , Hipertensão Arterial Pulmonar , Animais , Camundongos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Hipertensão Pulmonar/metabolismo , Hipóxia/metabolismo , Miócitos de Músculo Liso/metabolismo , Oxirredução , Hipertensão Arterial Pulmonar/metabolismo , Artéria Pulmonar/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptor Notch3/genética , Receptor Notch3/metabolismo , Proteínas Repressoras/metabolismo , Humanos
3.
Pulm Circ ; 12(3): e12139, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36186719

RESUMO

The hypothesis that a relationship exists between body mass index (BMI), functional class, and 6 min walk distance (6MWD) in Group 1-pulmonary arterial hypertension (PAH) was examined. Analysis of data from the UK National Cohort Study for heritable pulmonary arterial/idiopathic PAH suggests increased BMI is a predictor of worse functional class and shorter 6MWD; increased body-weight in mice and man may be associated with increased estrogen metabolism.

4.
Compr Physiol ; 12(4): 4103-4118, 2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-36036567

RESUMO

Serotonin is often referred to as a "happy hormone" as it maintains good mood, well-being, and happiness. It is involved in communication between nerve cells and plays a role in sleeping and digestion. However, too much serotonin can have pathogenic effects and serotonin synthesis is elevated in pulmonary artery endothelial cells from patients with pulmonary arterial hypertension (PAH). PAH is characterized by elevated pulmonary pressures, right ventricular failure, inflammation, and pulmonary vascular remodeling; serotonin has been shown to be associated with these pathologies. The rate-limiting enzyme in the synthesis of serotonin in the periphery of the body is tryptophan hydroxylase 1 (TPH1). TPH1 expression and serotonin synthesis are elevated in pulmonary artery endothelial cells in patients with PAH. The serotonin synthesized in the pulmonary arterial endothelium can act on the adjacent pulmonary arterial smooth muscle cells (PASMCs), adventitial macrophages, and fibroblasts, in a paracrine fashion. In humans, serotonin enters PASMCs cells via the serotonin transporter (SERT) and it can cooperate with the 5-HT1B receptor on the plasma membrane; this activates both contractile and proliferative signaling pathways. The "serotonin hypothesis of pulmonary hypertension" arose when serotonin was associated with PAH induced by diet pills such as fenfluramine, aminorex, and chlorphentermine; these act as indirect serotonergic agonists causing the release of serotonin from platelets and cells through the SERT. Here the role of serotonin in PAH is reviewed. Targeting serotonin synthesis or signaling is a promising novel alternative approach which may lead to novel therapies for PAH. © 2022 American Physiological Society. Compr Physiol 12: 1-16, 2022.


Assuntos
Hipertensão Pulmonar , Proliferação de Células , Células Endoteliais/metabolismo , Humanos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Artéria Pulmonar , Serotonina/metabolismo , Serotonina/farmacologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/farmacologia
5.
Eur J Pharmacol ; 900: 174066, 2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-33789156

RESUMO

Methamphetamine (MA) abuse is associated with the development of pulmonary arterial hypertension (PAH) and subsequent right ventricular failure. A recent clinical study demonstrated that female sex is a major risk factor for MA-induced PAH. The mechanisms associated with increased prevalence and severity of MA-induced PAH in females are still unclear. We hypothesized that MA may promote changes in gene expression in the right ventricle contributing to the development and/or worsening of PAH in females. Male and female C57BL/6 mice were treated with either MA or vehicle. Right and left ventricular systolic pressures (RVSP and LVSP, respectively) were assessed and tissue samples were collected for gene expression and histology. LVSP and RVSP were not affected by MA in either males or females. Right ventricular hypertrophy was significantly increased by MA in females but it was not affected by MA in males. In the female mice, MA-induced right ventricular hypertrophy was associated with increased expression of brain natriuretic peptide gene and members of the TGF-ß receptor signaling pathway such as TGF-ß receptor-1, smad3 and smad7. In male mice, there were no changes in right ventricular gene expression. Our results suggest that MA caused right ventricular hypertrophy in female mice, but not in males and that this was associated with an increase in hypertrophic genes. The right ventricular hypertrophy was not dependent on increased RVSP suggesting a direct effect of MA on the right ventricle. If this translates to PAH patients, it might explain the poor outcome observed in MA-associated female PAH patients.


Assuntos
Estimulantes do Sistema Nervoso Central/farmacologia , Hipertrofia Ventricular Direita/genética , Metanfetamina/farmacologia , Transtornos Relacionados ao Uso de Anfetaminas/genética , Animais , Pressão Sanguínea/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hipertensão Arterial Pulmonar/genética , Receptores de Fatores de Crescimento Transformadores beta/efeitos dos fármacos , Caracteres Sexuais , Transdução de Sinais/efeitos dos fármacos , Função Ventricular Esquerda/efeitos dos fármacos
6.
Clin Chest Med ; 42(1): 217-228, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33541615

RESUMO

Pulmonary arterial hypertension (PAH) occurs in women more than men whereas survival in men is worse than in women. In recent years, much research has been carried out to understand these sex differences in PAH. This article discusses clinical and preclinical studies that have investigated the influences of sex, serotonin, obesity, estrogen, estrogen synthesis, and estrogen metabolism on bone morphogenetic protein receptor type II signaling, the pulmonary circulation and right ventricle in both heritable and idiopathic pulmonary hypertension.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo II/fisiologia , Ventrículos do Coração/fisiopatologia , Hipertensão Pulmonar/fisiopatologia , Circulação Pulmonar/fisiologia , Estrogênios/biossíntese , Estrogênios/metabolismo , Feminino , Humanos , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/genética , Masculino , Obesidade/complicações , Serotonina/metabolismo , Caracteres Sexuais , Transdução de Sinais
7.
Hepatology ; 73(2): 726-737, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32407592

RESUMO

BACKGROUND AND AIMS: Portopulmonary hypertension (POPH) was previously associated with a single-nucleotide polymorphism (SNP) rs7175922 in aromatase (cytochrome P450 family 19 subfamily A member 1 [CYP19A1]). We sought to determine whether genetic variants and metabolites in the estrogen signaling pathway are associated with POPH. APPROACH AND RESULTS: We performed a multicenter case-control study. POPH patients had mean pulmonary artery pressure >25 mm Hg, pulmonary vascular resistance >240 dyn-sec/cm-5 , and pulmonary artery wedge pressure ≤15 mm Hg without another cause of pulmonary hypertension. Controls had advanced liver disease, right ventricular (RV) systolic pressure <40 mm Hg, and normal RV function by echocardiography. We genotyped three SNPs in CYP19A1 and CYP1B1 using TaqMan and imputed SNPs in estrogen receptor 1 using genome-wide markers. Estrogen metabolites were measured in blood and urine samples. There were 37 patients with POPH and 290 controls. Mean age was 57 years, and 36% were female. The risk allele A in rs7175922 (CYP19A1) was significantly associated with higher levels of estradiol (P = 0.02) and an increased risk of POPH (odds ratio [OR], 2.36; 95% confidence interval [CI], 1.12-4.91; P = 0.02) whereas other SNPs were not. Lower urinary 2-hydroxyestrogen/16-α-hydroxyestrone (OR per 1-ln decrease = 2.04; 95% CI, 1.16-3.57; P = 0.01), lower plasma levels of dehydroepiandrosterone-sulfate (OR per 1-ln decrease = 2.38; 95% CI, 1.56-3.85; P < 0.001), and higher plasma levels of 16-α-hydroxyestradiol (OR per 1-ln increase = 2.16; 95% CI, 1.61-2.98; P < 0.001) were associated with POPH. CONCLUSIONS: Genetic variation in aromatase and changes in estrogen metabolites were associated with POPH.


Assuntos
Aromatase/genética , Doença Hepática Terminal/complicações , Estrogênios/metabolismo , Hipertensão Portal/genética , Hipertensão Pulmonar/genética , Idoso , Aromatase/metabolismo , Estudos de Casos e Controles , Citocromo P-450 CYP1B1/genética , Citocromo P-450 CYP1B1/metabolismo , Ecocardiografia , Doença Hepática Terminal/sangue , Doença Hepática Terminal/genética , Doença Hepática Terminal/metabolismo , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Estrogênios/sangue , Estrogênios/urina , Feminino , Humanos , Hipertensão Portal/sangue , Hipertensão Portal/metabolismo , Hipertensão Portal/urina , Hipertensão Pulmonar/sangue , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/urina , Testes de Função Hepática , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Estudos Prospectivos , Transdução de Sinais/genética , Resistência Vascular/genética
8.
Ann Am Thorac Soc ; 18(2): 218-228, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32885987

RESUMO

Rationale: Sex hormones play a role in pulmonary arterial hypertension (PAH), but the menstrual cycle has never been studied.Objectives: We conducted a prospective observational study of eight women with stable PAH and 20 healthy controls over one cycle.Methods: Participants completed four study visits 1 week apart starting on the first day of menstruation. Relationships between sex hormones, hormone metabolites, and extracellular vesicle microRNA (miRNA) expression and clinical markers were compared with generalized linear mixed modeling.Results: Women with PAH had higher but less variable estradiol (E2) levels (P < 0.001) that tracked with 6-minute walk distance (P < 0.001), N-terminal prohormone of brain natriuretic peptide (P = 0.03) levels, and tricuspid annular plane systolic excursion (P < 0.01); the direction of these associations depended on menstrual phase. Dehydroepiandrosterone sulfate (DHEA-S) levels were lower in women with PAH (all visits, P < 0.001). In PAH, each 100-µg/dl increase in DHEA-S was associated with a 127-m increase in 6-minute walk distance (P < 0.001) and was moderated by the cardioprotective E2 metabolite 2-methoxyestrone (P < 0.001). As DHEA-S increased, N-terminal prohormone of brain natriuretic peptide levels decreased (P = 0.001). Expression of extracellular vesicle miRNAs-21, -29c, and -376a was higher in PAH, moderated by E2 and DHEA-S levels, and tracked with hormone-associated changes in clinical measures.Conclusions: Women with PAH have fluctuations in cardiopulmonary function during menstruation driven by E2 and DHEA-S. These hormones in turn influence transcription of extracellular vesicle miRNAs implicated in the pathobiology of pulmonary vascular disease and cancer.


Assuntos
Hipertensão Pulmonar , MicroRNAs , Hipertensão Arterial Pulmonar , Hipertensão Pulmonar Primária Familiar , Feminino , Humanos , Ciclo Menstrual
9.
Mol Ther Nucleic Acids ; 22: 396-405, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33230444

RESUMO

The 5HT1B receptor (5HT1BR) contributes to the pathogenic effects of serotonin in pulmonary arterial hypertension. Here, we determine the effect of a microRNA96 (miR96) mimic delivered directly to the lungs on development of severe pulmonary hypertension in rats. Female rats were dosed with sugen (30 mg/kg) and subjected to 3 weeks of hypobaric hypoxia. In normoxia, rats were dosed with either a 5HT1BR antagonist SB216641 (7.5 mg/kg/day for 3 weeks), miR96, or scramble sequence (50 µg per rat), delivered by intratracheal (i.t) administration, once a week for 3 weeks. Cardiac hemodynamics were determined, pulmonary vascular remodeling was assessed, and gene expression was assessed by qRT-PCR, and in situ hybridization and protein expression were assessed by western blot and ELISA. miR96 expression was increased in pulmonary arteries and associated with a downregulation of the 5HT1BR protein in the lung. miR96 reduced progression of right ventricular systolic pressure, pulmonary arterial remodeling, right ventricular hypertrophy, and the occurrence of occlusive pulmonary lesions. Importantly, miR96 had no off-target effects and did not affect fibrotic markers of liver and kidney function. In conclusion, direct delivery of miR96 to the lungs was effective, reducing progression of sugen/hypoxia-induced pulmonary hypertension with no measured off-target effects. miR96 may be a novel therapy for pulmonary arterial hypertension, acting through downregulation of 5HT1BR.

10.
Pulm Circ ; 10(3): 2045894020952019, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32999709

RESUMO

Obesity is a prevalent global public health issue characterized by excess body fat. Adipose tissue is now recognized as an important endocrine organ releasing an abundance of bioactive adipokines including, but not limited to, leptin, adiponectin and resistin. Obesity is a common comorbidity amongst pulmonary arterial hypertension patients, with 30% to 40% reported as obese, independent of other comorbidities associated with pulmonary arterial hypertension (e.g. obstructive sleep apnoea). An 'obesity paradox' has been observed, where obesity has been associated with subclinical right ventricular dysfunction but paradoxically may confer a protective effect on right ventricular function once pulmonary hypertension develops. Obesity and pulmonary arterial hypertension share multiple pathophysiological mechanisms including inflammation, oxidative stress, elevated leptin (proinflammatory) and reduced adiponectin (anti-inflammatory). The female prevalence of pulmonary arterial hypertension has instigated the hypothesis that estrogens may play a causative role in its development. Adipose tissue, a major site for storage and metabolism of sex steroids, is the primary source of estrogens and circulating estrogens levels which are elevated in postmenopausal women and men with pulmonary arterial hypertension. This review discusses the functions of adipose tissue in both health and obesity and the links between obesity and pulmonary arterial hypertension. Shared pathophysiological mechanisms and the contribution of specific fat depots, metabolic and sex-dependent differences are discussed.

11.
Biomedicines ; 8(10)2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33086482

RESUMO

Right ventricular hypertrophy (RVH) and subsequent failure are consequences of pulmonary arterial hypertension (PAH). While females are four times more likely to develop PAH, male patients have poorer survival even with treatment, suggesting a sex-dependent dimorphism in right ventricular (RV) hypertrophy/compensation. This may result from differential gene expression in the RV in male vs. female. To date, the sex dependent effect of pressure overload on RV function and changes in gene expression is still unclear. We hypothesize that pressure overload promotes gene expression changes in the RV that may contribute to a poorer outcome in males vs. females. To test this hypothesis, male and female Wistar rats underwent either a sham procedure (sham controls) or moderate pulmonary trunk banding (PTB) (a model of pressure overload induced compensated RV hypertrophy) surgery. Seven weeks post-surgery, RV function was assessed in vivo, and tissue samples were collected for gene expression using qPCR. Compared to sham controls, PTB induced significant increases in the right ventricular systolic pressure, the filling pressure and contractility, which were similar between male and female rats. PTB resulted in an increase in RVH indexes (RV weight, RV weight/tibia length and Fulton index) in both male and female groups. However, RVH indexes were significantly higher in male-PTB when compared to female-PTB rats. Whilst end of procedure body weight was greater in male rats, end of procedure pulmonary artery (PA) diameters were the same in both males and females. RV gene expression analysis revealed that the following genes were increased in PTB-male rats compared with the sham-operated controls: natriuretic peptide A (ANP) and B (BNP), as well as the markers of fibrosis; collagen type I and III. In females, only BNP was significantly increased in the RV when compared to the sham-operated female rats. Furthermore, ANP, BNP and collagen III were significantly higher in the RV from PTB-males when compared to RV from PTB-female rats. Our data suggest that pressure overload-mediated changes in gene expression in the RV from male rats may worsen RVH and increase the susceptibility of males to a poorer outcome when compared to females.

12.
Pulm Circ ; 10(2): 2045894020922810, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32523684

RESUMO

Pulmonary arterial hypertension, group 1 of the pulmonary hypertension disease family, involves pulmonary vascular remodelling, right ventricular dysfunction and cardiac failure. Oxidative stress, through activation of mitogen-activated protein kinases is implicated in these changes. Inhibition of apoptosis signal-regulating kinase 1, an apical mitogen-activated protein kinase, prevented pulmonary arterial hypertension developing in rodent models. Here, we investigate apoptosis signal-regulating kinase 1 in pulmonary arterial hypertension by examining the impact that its inhibition has on the molecular and cellular signalling in established disease. Apoptosis signal-regulating kinase 1 inhibition was investigated in in vivo pulmonary arterial hypertension and in vitro pulmonary hypertension models. In the in vivo model, male Sprague Dawley rats received a single subcutaneous injection of Sugen SU5416 (20 mg/kg) prior to two weeks of hypobaric hypoxia (380 mmHg) followed by three weeks normoxia (Sugen/hypoxic), then animals were either maintained for three weeks on control chow or one containing apoptosis signal-regulating kinase 1 inhibitor (100 mg/kg/day). Cardiovascular measurements were carried out. In the in vitro model, primary cultures of rat pulmonary artery fibroblasts and rat pulmonary artery smooth muscle cells were maintained in hypoxia (5% O2) and investigated for proliferation, migration and molecular signalling in the presence or absence of apoptosis signal-regulating kinase 1 inhibitor. Sugen/hypoxic animals displayed significant pulmonary arterial hypertension compared to normoxic controls at eight weeks. Apoptosis signal-regulating kinase 1 inhibitor decreased right ventricular systolic pressure to control levels and reduced muscularised vessels in lung tissue. Apoptosis signal-regulating kinase 1 inhibition was found to prevent hypoxia-induced proliferation, migration and cytokine release in rat pulmonary artery fibroblasts and also prevented rat pulmonary artery fibroblast-induced rat pulmonary artery smooth muscle cell migration and proliferation. Apoptosis signal-regulating kinase 1 inhibition reversed pulmonary arterial hypertension in the Sugen/hypoxic rat model. These effects may be a result of intrinsic changes in the signalling of adventitial fibroblast.

14.
Pharmacol Rep ; 72(3): 756-762, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32333296

RESUMO

BACKGROUND: LY393558 is a combined antagonist of serotonin (5-HT) 5-HT1B receptors and inhibitor of serotonin transporter (SERT). LY393558 reduces 5-HT-induced vasoconstriction and remodelling of rat and/or mouse pulmonary arteries. The aim of our study was to examine the effect of LY393558 on the 5-HT-stimulated vasoconstriction of human pulmonary arteries (hPAs) and to determine the underlying mechanism(s). METHODS: Vascular effects of 5-HT receptor agonists, antagonists and a SERT inhibitor were examined in organ bath studies on intralobar hPAs obtained from patients during resection of lung carcinoma. RESULTS: Serotonin and agonists of the 5-HT1B receptor (5-carboxamidotryptamine, 5-CT) and 5-HT2A receptor (α-methyl-5-HT) contracted endothelium-intact hPAs in a concentration-dependent fashion. The 5-HT1B antagonists SB224289 and GR55562 reduced responses induced by 5-HT and 5-CT and the 5-HT2A antagonist ketanserin inhibited the effects of 5-HT and α-methyl-5-HT. Administration of the SERT inhibitor citalopram (at a concentration that failed to modify the 5-HT-induced vasoconstriction) in combination with SB224289 or GR55562 was more effective in inhibiting the response to 5-HT than the 5-HT1B antagonists alone. LY393558 showed the greatest antagonistic effect against the vasoconstriction elicited by 5-HT, 5-CT and α-methyl-5-HT. CONCLUSIONS: LY393558 reduces the 5-HT-induced contraction antagonizing 5-HT1B and 5-HT2A receptors probably due to synergic interaction between SERT inhibition and 5-HT1B receptor antagonism. Thus, it might represent a valuable future option in the pulmonary arterial hypertension therapy.


Assuntos
Óxidos S-Cíclicos/farmacologia , Artéria Pulmonar/efeitos dos fármacos , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Antagonistas do Receptor 5-HT1 de Serotonina/farmacologia , Antagonistas do Receptor 5-HT2 de Serotonina , Tiadiazinas/farmacologia , Vasoconstrição/efeitos dos fármacos , Idoso , Benzamidas/farmacologia , Citalopram/farmacologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Piperidonas/farmacologia , Piridinas/farmacologia , Receptor 5-HT1B de Serotonina , Receptor 5-HT2A de Serotonina , Compostos de Espiro/farmacologia
15.
Pulm Circ ; 10(1): 2045894020908783, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32206305

RESUMO

Increased risk and severity of idiopathic pulmonary arterial hypertension (iPAH) is associated with elevated estradiol in men and postmenopausal women. Pulmonary arteries synthesise estradiol via aromatase and metabolise it via CYP1B1 to mitogenic metabolites; SNPs in aromatase and CYP1B1 have been associated with PAH. This suggests that estradiol metabolism could be altered in iPAH. This proof-of-concept study profiles estradiol and several metabolites of estradiol simultaneously in serum from iPAH patients and controls. We show that the estradiol and metabolite profile is altered in iPAH and that 16-hydroxyestrone and 16-hydroxyestradiol accumulate in iPAH patients with 16-hydroxyestrone levels relating to disease severity.

16.
Clin Sci (Lond) ; 133(24): 2481-2498, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31868216

RESUMO

Notch signalling is critically involved in vascular morphogenesis and function. Four Notch isoforms (Notch1-4) regulating diverse cellular processes have been identified. Of these, Notch3 is expressed almost exclusively in vascular smooth muscle cells (VSMCs), where it is critically involved in vascular development and differentiation. Under pathological conditions, Notch3 regulates VSMC switching between the contractile and synthetic phenotypes. Abnormal Notch3 signalling plays an important role in vascular remodelling, a hallmark of several cardiovascular diseases, including pulmonary arterial hypertension (PAH). Because of the importance of Notch3 in VSMC (de)differentiation, Notch3 has been implicated in the pathophysiology of pulmonary vascular remodelling in PAH. Here we review the current literature on the role of Notch in VSMC function with a focus on Notch3 signalling in pulmonary artery VSMCs, and discuss potential implications in pulmonary artery remodelling in PAH.


Assuntos
Hipertensão Arterial Pulmonar/fisiopatologia , Receptor Notch3/metabolismo , Remodelação Vascular , Animais , Diferenciação Celular , Humanos , Músculo Liso Vascular/fisiopatologia , Miócitos de Músculo Liso , Artéria Pulmonar , Transdução de Sinais
17.
Data Brief ; 23: 103740, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31372406

RESUMO

Analysis of catechol estrogens (2 & 4 hydroxy-estrone and estradiol) has proven troublesome by liquid chromatography tandem mass spectrometry due to their low concentrations, short half-lives and temperature-labile nature. Derivatization to methyl piperazine analogues has been reported for a panel of 9 estrogens in, "Derivatization enhances analysis of estrogens and their bioactive metabolites in human plasma by liquid chromatography tandem mass spectrometry" (Denver et al., 2019). Data show alteration of the base catalyst in this method was required to allow detection of catechol estrogens to low levels. Data also highlight the challenges faced in chromatographic separation of isomers and isotopologues, which were partially overcome by employing an extended column length and reduced oven temperature. In addition, data analysis displayed significant matrix effects during quantitation in plasma, following solid-phase extraction, despite efficient recoveries.

19.
J Steroid Biochem Mol Biol ; 192: 105373, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31112747

RESUMO

Estrogens and their bioactive metabolites play key roles in regulating diverse processes in health and disease. In particular, estrogens and estrogenic metabolites have shown both protective and non-protective effects on disease pathobiology, implicating the importance of this steroid pathway in disease diagnostics and monitoring. All estrogens circulate in a wide range of concentrations, which in some patient cohorts can be extremely low. However, elevated levels of estradiol are reported in disease. For example, in pulmonary arterial hypertension (PAH) elevated levels have been reported in men and postmenopausal women. Conventional immunoassay techniques have come under scrutiny, with their selectivity, accuracy and precision coming into question. Analytical methodologies such as gas and liquid chromatography coupled to single and tandem mass spectrometric approaches (GC-MS, GC-MS/MS, LC-MS and LC-MS/MS) have been developed to quantify endogenous estrogens and in some cases their bioactive metabolites in biological fluids such as urine, serum, plasma and saliva. Liquid-liquid or solid-phase extraction approaches are favoured with derivatization remaining a necessity for detection in lower volumes of sample. The limits of quantitation of individual assays vary but are commonly in the range of 0.5-5 pg/mL for estrone and estradiol, with limits for their bioactive metabolites being higher. This review provides an overview of current approaches for measurement of unconjugated estrogens in biological matrices by MS, highlighting the advances in this field and the challenges remaining for routine use in the clinical and research environment.


Assuntos
Cromatografia Líquida/métodos , Estrogênios/análise , Espectrometria de Massas em Tandem/métodos , Pesquisa Biomédica , Humanos
20.
Eur Respir J ; 53(6)2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30923189

RESUMO

Obesity is a common comorbidity for pulmonary arterial hypertension (PAH). Additionally, oestrogen and its metabolites are risk factors for the development of PAH. Visceral adipose tissue (VAT) is a major site of oestrogen production; however, the influence of obesity-induced changes in oestrogen synthesis and metabolism on the development of PAH is unclear. To address this we investigated the effects of inhibiting oestrogen synthesis and metabolism on the development of pulmonary hypertension in male and female obese mice.We depleted endogenous oestrogen in leptin-deficient (ob/ob) mice with the oestrogen inhibitor anastrozole (ANA) and determined the effects on the development of pulmonary hypertension, plasma oestradiol and urinary 16α-hydroxyestrone (16αOHE1). Oestrogen metabolism through cytochrome P450 1B1 (CYP1B1) was inhibited with 2,2',4,6'-tetramethoxystilbene (TMS).ob/ob mice spontaneously develop pulmonary hypertension, pulmonary vascular remodelling and increased reactive oxygen species production in the lung; these effects were attenuated by ANA. Oestradiol levels were decreased in obese male mice; however, VAT CYP1B1 and 16αOHE1 levels were increased. TMS also attenuated pulmonary hypertension in male ob/ob mice. Intra-thoracic fat from ob/ob mice and VAT conditioned media produce 16αOHE1 and can contribute to oxidative stress, effects that are attenuated by both ANA and TMS.Obesity can induce pulmonary hypertension and changes in oestrogen metabolism, resulting in increased production of 16αOHE1 from VAT that contributes to oxidative stress. Oestrogen inhibitors are now in clinical trials for PAH. This study has translational consequences as it suggests that oestrogen inhibitors may be especially beneficial in treating obese individuals with PAH.


Assuntos
Estrogênios/metabolismo , Gordura Intra-Abdominal/metabolismo , Obesidade/metabolismo , Hipertensão Arterial Pulmonar/enzimologia , Artéria Pulmonar/enzimologia , Anastrozol , Animais , Citocromo P-450 CYP1B1/genética , Estradiol/sangue , Feminino , Hidroxiestronas/urina , Hipóxia/complicações , Leptina/metabolismo , Pulmão/enzimologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Knockout , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Obesidade/genética , Hipertensão Arterial Pulmonar/induzido quimicamente , Hipertensão Arterial Pulmonar/patologia , Artéria Pulmonar/patologia , Estilbenos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...