Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Org Chem ; 73(17): 6623-35, 2008 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-18662034

RESUMO

The absolute rate constants, k(inh), and stoichiometric factors, n, of pyrroles, 2-methyl-3-ethylcarboxy-4,5-di-p-methoxyphenylpyrrole, 6, 2,3,4,5-tetraphenylpyrrole, 7, and 2,3,4,5-tetra-p-methoxyphenylpyrrole, 8, compared to the phenolic antioxidant, di-tert-butylhydroxyanisole, DBHA, during inhibited oxidation of cumene initiated by AIBN at 30 degrees C gave the relative antioxidant activities (k(inh)) DBHA > 8 > 7 > 6 and n = 2, whereas in styrene, 8 > DBHA. These results are explained by hydrogen atom transfer, HAT, from the N-H of pyrroles to ROO(*) radicals. The k(inh) values in styrene of dimethyl esters of the bile pigments of bilirubin ester (BRDE), of biliverdin ester (BVDE), and of a model compound (dipyrrinone, 1) gave k(inh) in the order pentamethylhydroxychroman (PMHC) >> BRDE > 1 > BVDE. These antioxidant activities for BVDE and the model compound, 1, and PMHC dropped dramatically in the presence of methanol due to hydrogen bonding at the pyrrolic N-H group. In contrast the k(inh) of BRDE increased in methanol. We now show that pyrrolic compounds may react by HAT, proton-coupled electron transfer, PCET, or single electron transfer, SET, depending on their structure, the nature of the solvent, and the attacking radical. Compounds BVDE and 1 react by the HAT or PCET pathway (HAT/PCET) in styrene/chlorobenzene with ROO(*) and with the DPPH(*) radical in chlorobenzene according to N-H/N-D kH/kD of 1.6, whereas the DKIE with BRDE was only 1.2 with ROO(*). The antioxidant properties of polypyrroles of the BVDE class and model compounds (e.g., 1) are controlled by intramolecular H bonding which stabilizes an intermediate pyrrolic radical in HAT/PCET. According to kinetic polar solvent effects on the monopyrrole, 8, and BRDE, which gave increased rates in methanol, some pyrrolic structures are also susceptible to SET reactions. This conclusion is supported by some calculated ionization potentials. The antioxidant mechanism for BRDE with peroxyl radicals is described by the PCET reaction. Experiments using the 2,6-di-tert-butyl-4-(4'-methoxyphenyl)phenoxyl radical (DBMP(*)) showed this to be a better radical to monitor HAT activities in stopped-flow kinetics compared to the use of the more popular DPPH(*) radical.

2.
Free Radic Biol Med ; 43(4): 600-9, 2007 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-17640570

RESUMO

The antioxidant capacities, antioxidant activities, k(inh), and stoichiometric factors, n, of water-soluble derivatives of bilirubin (BR), BR-human serum albumin (BR-HSA), and BR-ditaurate disodium conjugate (BRC) were determined in aqueous/lipid dispersions of sodium dodecyl sulfate (SDS) micelles/methyl linoleate and in bilayers of dilinoleoylphosphatidylcholine (DLPC) during initiation by water-soluble azo-bis-amidinopropane dihydrochloride (ABAP). The inhibition rate constants for BRC and BR-HSA were similar in micelles (k(inh) approximately 1.3 x 10(4) M(-1) s(-1)), where n approximately 2, whereas the k(inh) for BR-HSA dropped by (1/2) in bilayers. The dimethyl ester of bilirubin (BRDE) gave a k(inh) only one-tenth that of the vitamin E analog, pentamethylhydroxychroman (PMHC) in SDS micelles/methyl linoleate when initiated by lipid-soluble azo-bis-2,4-dimethylvaleronitrile (DMVN). Biliverdin hydrochloride (BVHCl) was NOT an effective peroxyl radical-trapping agent in the micellar phase during initiation by ABAP or DMVN containing methyl linoleate but it inhibited oxygen uptake in the aqueous phase. Both BRC and BR-HSA extended the total radical antioxidant parameter (TRAP) of human blood plasma and their contribution to TRAP was in the range of 5-10% of the natural TRAP of blood plasma, depending on the BR content determined in the blood plasma.


Assuntos
Antioxidantes/química , Bilirrubina/química , Bicamadas Lipídicas/química , Micelas , Plasma/química , Albuminas/química , Bilirrubina/análogos & derivados , Biliverdina/química , Humanos , Oxirredução , Taurina/análogos & derivados , Taurina/química
3.
J Am Chem Soc ; 128(51): 16432-3, 2006 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-17177355

RESUMO

A new class of thermally activated chain-breaking antioxidants is presented. Dimers of persistent carbon-centered radicals are able to inhibit the autoxidation of cumene and styrene with better rate constants than the commercial antioxidant Irganox HP-136 and 3,5-di-tert-butyl-4-hydroxyanisole. A dramatic increase in antioxidant activity is observed with increasing temperature as more dimers dissociate to their corresponding persistent radicals.


Assuntos
Antioxidantes/química , Carbono/química , Lactonas/química , Derivados de Benzeno/antagonistas & inibidores , Derivados de Benzeno/química , Dimerização , Radicais Livres/química , Estrutura Molecular , Oxirredução , Estireno/antagonistas & inibidores , Estireno/química , Fatores de Tempo
4.
J Org Chem ; 71(1): 22-30, 2006 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-16388613

RESUMO

[reaction: see text] Rate constants for hydrogen-atom transfer (HAT) from bilirubin dimethyl ester (BRDE) and biliverdin dimethyl ester (BVDE) to peroxyl radicals during inhibited autoxidation of styrene initiated by azo-bisisobutyronitrile (AIBN) were k(inh)(BRDE) = 22.5 x 10(4) and k(inh)(BVDE) = 10.2 x 10(4) M(-1) s(-1), and the stoichiometric factors (n) were 2.0 and 2.7, respectively. A synthetic tetrapyrrole (bis(dipyrromethene)) containing the alpha-central (2,2') CH2 linkage gave k(inh) = 39.9 x 10(4) M(-1) s(-1) and n = 2.3, whereas the beta-linked (3,3') isomer was not an active antioxidant. Several dipyrrinones were synthesized as mimics of the two outer heterocyclic rings of bilirubin and biliverdin. The dipyrrinones containing N-H groups in each ring were active antioxidants, whereas those lacking two such "free" N-H groups, such as N-CH3 dipyrrinones and dipyrromethenes, did not exhibit antioxidant activity. Overall, the relative k(inh) values compared to those of phenolic antioxidants, 2,6-di-tert-butyl-4-methoxyphenol (DBHA) and 2,6-di-tert-butyl-4-methylphenol (BHT), were 2,2'-bis(dipyrromethene) > BRDE > DBHA > dipyrrinones > BVDE > BHT. This general trend in antioxidant activities was also observed for the inhibited autoxidation of cumene initiated by AIBN. Chemical calculations of the N-H bond dissociation enthalpies (BDEs) of the typical structures support a HAT mechanism from N-H groups to trap peroxyl radicals. Intramolecular hydrogen bonding of intermediate nitrogen radicals has a major influence on the antioxidant activities of all compounds studied. Indeed, chemical calculations showed that the initial nitrogen radical from a dipyrrinone is stabilized by 9.0 kcal/mol because of H-bonding between the N-H remaining on one ring and the ground-state pyrrolyl radical of the adjacent ring in the natural zusammen structure. The calculated minimum structure of bilirubin shows strong intramolecular H-bonding of the N-H groups with carbonyl groups resulting in the known "ridge-tile" structure which is not an active HAT antioxidant. The calculated minimum structure of biliverdin is planar. BRDE is readily converted into BVDE by reaction with the electron-deficient DPPH* radical under argon in chlorobenzene. An electron-transfer mechanism is proposed for the initiating step in this reaction, and this is supported by the relatively low ionizing potential of a model dipyrrole representing the two central rings of bilirubin.


Assuntos
Antioxidantes/química , Bilirrubina/análogos & derivados , Biliverdina/química , Modelos Químicos , Polímeros/química , Pirróis/química , Bilirrubina/química , Radicais Livres/química , Hidrogênio/química , Cinética , Estrutura Molecular , Oxigênio/química , Soluções , Estireno/química
5.
Chem Res Toxicol ; 19(1): 79-85, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16411659

RESUMO

The antioxidant properties of Hantzsch 1,4-dihydropyridine esters and two dibenzo-1,4-dihydropyridines, 9,10-dihydroacridine (DHAC) and N-methyl-9,10-dihydroacridine (N-Me-DHAC), have been explored by determining whether they retard the autoxidation of styrene or cumene at 30 degrees C. Despite a claim to the contrary [(2003) Chem. Res. Toxicol. 16, 208-215], the Hantsch esters were found to be virtually inactive as chain-breaking antioxidants (CBAs), their reactivity toward peroxyl radicals being some 5 orders of magnitude lower than that of the excellent CBA, 2,2,5,7,8-pentamethyl-6-hydroxy-chroman (PMHC). DHAC was found to be about a factor of 10 less reactive than PMHC. From kinetic measurements using DHAC, N-deuterio-DHAC, and N-Me-DHAC, it is concluded that it is the N--H hydrogen in DHAC that is abstracted by peroxyl radicals, despite the fact that in DHAC the calculated C-H bond dissociation enthalpy (BDE) is about 11 kcal/mol lower than the N-H BDE. The rates of hydrogen atom abstraction by the 2,2-diphenyl-1-picrylhydrazyl radical (dpph*) have also been determined for the same series of compounds. The trends in the peroxyl and dpph* rate constants are similar.


Assuntos
Bloqueadores dos Canais de Cálcio/química , Di-Hidropiridinas/química , Peróxidos/química , Acridinas/síntese química , Antioxidantes/química , Derivados de Benzeno/química , Compostos de Bifenilo/química , Canais de Cálcio Tipo L/química , Cromanos/química , Radicais Livres/química , Hidrazinas/química , Cinética , Nifedipino/química , Nimodipina/química , Oxirredução , Picratos , Estireno/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...