Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Pediatr Pulmonol ; 59(5): 1449-1453, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38415920

RESUMO

BACKGROUND: Elexacaftor in combination with Tezacaftor and Ivacaftor (ETI) became licensed in the United Kingdom in early 2022 for children aged 6-11 years with cystic fibrosis (CF) and an eligible mutation. Many in this age group have excellent prior lung health making quantitative measurement of benefit challenging. Clinical trials purport that lung clearance index (LCI2.5) measurement is most suitable for this purpose. OBJECTIVES: This study aimed to understand the clinical utility of LCI2.5 in detecting change after commencing ETI in the real world. PATIENT SELECTION/METHODS: Baseline anthropometric data were collected along with spirometry (forced expiratory volume in 1 s [FEV1], forced vital capacityFV and LCI2.5 measures in children aged 6-11 years with CF before starting ETI. Measures were repeated after a mean (range) of 8.2 (7-14) months of ETI treatment. The primary endpoint was a change in LCI2.5, with secondary endpoints including change in FEV1 and change in body mass index (BMI) also reported. RESULTS: Twelve children were studied (seven male, mean age 9.5 years at baseline). Our study population had a mean (SD) LCI2.5 of 7.01 (1.14) and FEV1 of 96 (13) %predicted at baseline. Mean (95% confidence interval) changes in LCI2.5 [-0.7 (-1.4, 0), p = .06] and BMI [+0.7 (+0.1, +1.3), p = .03] were observed, along with changes in FEV1 of +3.1 (-1.9, +8.1) %predicted. CONCLUSIONS: Real-world changes in LCI2.5 (-0.7) are different to those reported in clinical trials (-2.29). Lower baseline LCI2.5 as a result of prior modulator exposure, high baseline lung health, and new LCI2.5 software analyses all contribute to lower LCI2.5 values being recorded in the real world of children with CF.


Assuntos
Aminofenóis , Benzodioxóis , Fibrose Cística , Combinação de Medicamentos , Indóis , Pirrolidinas , Quinolonas , Humanos , Fibrose Cística/tratamento farmacológico , Fibrose Cística/fisiopatologia , Criança , Masculino , Feminino , Aminofenóis/uso terapêutico , Quinolonas/uso terapêutico , Indóis/uso terapêutico , Volume Expiratório Forçado/efeitos dos fármacos , Benzodioxóis/uso terapêutico , Piridinas/uso terapêutico , Pirazóis/uso terapêutico , Pulmão/fisiopatologia , Pulmão/efeitos dos fármacos , Pirróis/uso terapêutico , Capacidade Vital/efeitos dos fármacos , Espirometria , Agonistas dos Canais de Cloreto/uso terapêutico
2.
J Asthma ; 60(12): 2170-2176, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37345889

RESUMO

OBJECTIVE: To investigate the BMI trajectories of children attending a tertiary asthma clinic during the COVID-19 pandemic. METHODS: Data were collected retrospectively on children and young people with asthma who attended the Royal Hospital for Children and Young People (RHCYP) before March 2020 (pre-COVID-19) and after August 2021 (the lifting of national restrictions). MAIN OUTCOME MEASURES: Changes in weight, height, and BMI Z score measured between 13/03/2019 and 13/03/2020 (timepoint 1) and then again during the period 01/08/2021 to 01/10/2022 (timepoint 2); changes in lung function parameters (FEV1) between the timepoints; proportion of study sample classed as obese and overweight at both timepoints; interaction analyses according to deprivation indices (SIMD decile), the use of high dose inhaled corticosteroid (ICS) therapy, and the presence of atopy. RESULTS: Eighty-nine children aged 5-18 years were studied. Weight and height Z scores significantly increased between timepoint 1 and 2 [weight Z score: +0.19 (0.08, +0.30), height Z score: +0.15 (+0.07, +0.23)], such that no significant change was observed in the BMI Z score [+ 0.07 (-0.05, +0.20)] or BMI centile [+0.5 (-3.1, +4.1)]. There was also no change in FEV1%predicted [-0.1 (-3.8, +3.6)] between the timepoints. CONCLUSIONS: No changes in BMI were observed in children with asthma before and after COVID-19 lockdowns. Improved linear growth was noted, implying an improvement in the overall physical health of our study cohort. This may suggest improved asthma control, which may reflect avoidance of viral triggers and/or improved adherence to treatment.


Assuntos
Asma , COVID-19 , Criança , Humanos , Adolescente , Índice de Massa Corporal , Estudos Retrospectivos , Asma/tratamento farmacológico , Asma/epidemiologia , Pandemias , COVID-19/epidemiologia , Controle de Doenças Transmissíveis , Estudos de Coortes , Sobrepeso/epidemiologia , Sobrepeso/terapia
3.
Cell Rep Methods ; 3(4): 100456, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37159667

RESUMO

Decreased left ventricle (LV) function caused by genetic mutations or injury often leads to debilitating and fatal cardiovascular disease. LV cardiomyocytes are, therefore, a potentially valuable therapeutical target. Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) are neither homogeneous nor functionally mature, which reduces their utility. Here, we exploit cardiac development knowledge to instruct differentiation of hPSCs specifically toward LV cardiomyocytes. Correct mesoderm patterning and retinoic acid pathway blocking are essential to generate near-homogenous LV-specific hPSC-CMs (hPSC-LV-CMs). These cells transit via first heart field progenitors and display typical ventricular action potentials. Importantly, hPSC-LV-CMs exhibit increased metabolism, reduced proliferation, and improved cytoarchitecture and functional maturity compared with age-matched cardiomyocytes generated using the standard WNT-ON/WNT-OFF protocol. Similarly, engineered heart tissues made from hPSC-LV-CMs are better organized, produce higher force, and beat more slowly but can be paced to physiological levels. Together, we show that functionally matured hPSC-LV-CMs can be obtained rapidly without exposure to current maturation regimes.


Assuntos
Doenças Cardiovasculares , Células-Tronco Pluripotentes , Humanos , Miócitos Cardíacos , Ventrículos do Coração , Potenciais de Ação
4.
Front Physiol ; 14: 1079727, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36866170

RESUMO

Introduction: Reduced synchrony of calcium release and t-tubule structure organization in individual cardiomyocytes has been linked to loss of contractile strength and arrhythmia. Compared to confocal scanning techniques widely used for imaging calcium dynamics in cardiac muscle cells, light-sheet fluorescence microscopy enables fast acquisition of a 2D plane in the sample with low phototoxicity. Methods: A custom light-sheet fluorescence microscope was used to achieve dual-channel 2D timelapse imaging of calcium and the sarcolemma, enabling calcium sparks and transients in left and right ventricle cardiomyocytes to be correlated with the cell microstructure. Imaging electrically stimulated dual-labelled cardiomyocytes immobilized with para-nitroblebbistatin, a non-phototoxic, low fluorescence contraction uncoupler, with sub-micron resolution at 395 fps over a 38 µm × 170 µm FOV allowed characterization of calcium spark morphology and 2D mapping of the calcium transient time-to-half-maximum across the cell. Results: Blinded analysis of the data revealed sparks with greater amplitude in left ventricle myocytes. The time for the calcium transient to reach half-maximum amplitude in the central part of the cell was found to be, on average, 2 ms shorter than at the cell ends. Sparks co-localized with t-tubules were found to have significantly longer duration, larger area and spark mass than those further away from t-tubules. Conclusion: The high spatiotemporal resolution of the microscope and automated image-analysis enabled detailed 2D mapping and quantification of calcium dynamics of n = 60 myocytes, with the findings demonstrating multi-level spatial variation of calcium dynamics across the cell, supporting the dependence of synchrony and characteristics of calcium release on the underlying t-tubule structure.

5.
Cell Signal ; 103: 110563, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36565897

RESUMO

High expression of the transmembrane receptor IL6ST (gp130) has been identified as a predictive biomarker of endocrine treatment response in ERα-positive breast cancers. To investigate its function further in this disease, this study evaluated the expression, function and signalling of IL6ST in ERα-positive breast cancer cell lines and investigated crosstalk between ERα and IL6ST. IL6ST was differentially expressed in ERα-positive breast cancer cell lines (low in MCF-7, high in ZR751 and T47D), while multiple soluble isoforms of IL6ST were identified. IL6ST is the common signal transducing receptor component for the IL6ST family of cytokines and the effects of seven IL6ST cytokines on these cell lines were studied. These cytokines caused differential growth and migration effects in these cell lines e.g. MCF-7 cells were growth-stimulated, while ZR751 cells were inhibited by IL6 and OSM.. Activation of the STAT and ERK pathways is associated with these responses. Evidence to support trans-signalling involved in cell growth and migration was obtained in both MCF-7 and ZR751 models. Interaction between cytokines and estrogen on ERα-positive cell lines growth were analysed. High expression of IL6ST (in ZR751) may lead to growth inhibition by interacting cytokines while lower expression (in MCF-7) appears associated with proliferation. High IL6ST expression is consistent with a more beneficial clinical outcome if cytokine action contributes to anti-estrogen action.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Receptor gp130 de Citocina , Citocinas/metabolismo , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Estrogênios/farmacologia , Regulação Neoplásica da Expressão Gênica , Interleucina-6/metabolismo , Células MCF-7
6.
Redox Biol ; 59: 102580, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36566737

RESUMO

Worldwide, up to 8.8 million excess deaths/year have been attributed to air pollution, mainly due to the exposure to fine particulate matter (PM). Traffic-related noise is an additional contributor to global mortality and morbidity. Both health risk factors substantially contribute to cardiovascular, metabolic and neuropsychiatric sequelae. Studies on the combined exposure are rare and urgently needed because of frequent co-occurrence of both risk factors in urban and industrial settings. To study the synergistic effects of PM and noise, we used an exposure system equipped with aerosol generator and loud-speakers, where C57BL/6 mice were acutely exposed for 3d to either ambient PM (NIST particles) and/or noise (aircraft landing and take-off events). The combination of both stressors caused endothelial dysfunction, increased blood pressure, oxidative stress and inflammation. An additive impairment of endothelial function was observed in isolated aortic rings and even more pronounced in cerebral and retinal arterioles. The increase in oxidative stress and inflammation markers together with RNA sequencing data indicate that noise particularly affects the brain and PM the lungs. The combination of both stressors has additive adverse effects on the cardiovascular system that are based on PM-induced systemic inflammation and noise-triggered stress hormone signaling. We demonstrate an additive upregulation of ACE-2 in the lung, suggesting that there may be an increased vulnerability to COVID-19 infection. The data warrant further mechanistic studies to characterize the propagation of primary target tissue damage (lung, brain) to remote organs such as aorta and heart by combined noise and PM exposure.


Assuntos
COVID-19 , Sistema Cardiovascular , Camundongos , Animais , Material Particulado/efeitos adversos , Camundongos Endogâmicos C57BL , Inflamação/induzido quimicamente , Estresse Oxidativo , Aeronaves
7.
J Physiol ; 601(5): 905-921, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35946572

RESUMO

In adapting to disease and loss of tissue, the heart shows great phenotypic plasticity that involves changes to its structure, composition and electrophysiology. Together with parallel whole body cardiovascular adaptations, the initial decline in cardiac function resulting from the insult is compensated. However, in the long term, the heart muscle begins to fail and patients with this condition have a very poor prognosis, with many dying from disturbances of rhythm. The surviving myocytes of these hearts gain Na+ , which is positively inotropic because of alterations to Ca2+ fluxes mediated by the Na+ /Ca2+ exchange, but compromises Ca2+ -dependent energy metabolism in mitochondria. Uptake of Ca2+ into the sarcoplasmic reticulum (SR) is reduced because of diminished function of SR Ca2+ ATPases. The result of increased Ca2+ influx and reduced SR Ca2+ uptake is an increase in the diastolic cytosolic Ca2+ concentration, which promotes spontaneous SR Ca2+ release and induces delayed afterdepolarisations. Action potential duration prolongs because of increased late Na+ current and changes in expression and function of other ion channels and transporters increasing the probability of the formation of early afterdepolarisations. There is a reduction in T-tubule density and so the normal spatial arrangements required for efficient excitation-contraction coupling are compromised and lead to temporal delays in Ca2+ release from the SR. Therefore, the structural and electrophysiological responses that occur to provide compensation do so at the expense of (1) increasing the likelihood of arrhythmogenesis; (2) activating hypertrophic, apoptotic and Ca2+ signalling pathways; and (3) decreasing the efficiency of SR Ca2+ release.


Assuntos
Insuficiência Cardíaca , Humanos , Miocárdio/metabolismo , Coração , Diástole , Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Cálcio/metabolismo , Contração Miocárdica , Miócitos Cardíacos/metabolismo , Trocador de Sódio e Cálcio/metabolismo
8.
Sci Data ; 9(1): 753, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36473868

RESUMO

Paleotemperature proxy data form the cornerstone of paleoclimate research and are integral to understanding the evolution of the Earth system across the Phanerozoic Eon. Here, we present PhanSST, a database containing over 150,000 data points from five proxy systems that can be used to estimate past sea surface temperature. The geochemical data have a near-global spatial distribution and temporally span most of the Phanerozoic. Each proxy value is associated with consistent and queryable metadata fields, including information about the location, age, and taxonomy of the organism from which the data derive. To promote transparency and reproducibility, we include all available published data, regardless of interpreted preservation state or vital effects. However, we also provide expert-assigned diagenetic assessments, ecological and environmental flags, and other proxy-specific fields, which facilitate informed and responsible reuse of the database. The data are quality control checked and the foraminiferal taxonomy has been updated. PhanSST will serve as a valuable resource to the paleoclimate community and has myriad applications, including evolutionary, geochemical, diagenetic, and proxy calibration studies.


Assuntos
Reprodutibilidade dos Testes
10.
Front Physiol ; 13: 1023755, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439245

RESUMO

Background: The increased risk of post-menopausal women developing abnormalities of heart function emphasises the requirement to understand the effect of declining oestrogen levels on cardiac electrophysiology and structure, and investigate possible therapeutic targets, namely the G protein-coupled oestrogen receptor 1 (GPER). Methods: Female guinea pigs underwent sham or ovariectomy (OVx) surgeries. Cardiomyocytes were isolated 150-days post-operatively. Membrane structure was assessed using di-8-ANEPPs staining and scanning ion conductance microscopy. Imunnohistochemistry (IHC) determined the localisation of oestrogen receptors. The effect of GPER activation on excitation-contraction coupling mechanisms were assessed using electrophysiological and fluorescence techniques. Downstream signalling proteins were investigated by western blot. Results: IHC staining confirmed the presence of nuclear oestrogen receptors and GPER, the latter prominently localised to the peri-nuclear region and having a clear striated pattern elsewhere in the cells. Following OVx, GPER expression increased and its activation reduced Ca2+ transient amplitude (by 40%) and sarcomere shortening (by 32%). In these cells, GPER activation reduced abnormal spontaneous Ca2+ activity, shortened action potential duration and limited drug-induced early after-depolarisation formation. Conclusion: In an animal species with comparable steroidogenesis and cardiac physiology to humans, we show the expression and localisation of all three oestrogen receptors in cardiac myocytes. We found that following oestrogen withdrawal, GPER expression increased and its activation limited arrhythmogenic behaviours in this low oestrogen state, indicating a potential cardioprotective role of this receptor in post-menopausal women.

11.
Paleoceanogr Paleoclimatol ; 37(9): e2022PA004474, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36247808

RESUMO

Oceanic Anoxic Event 2, spanning the Cenomanian/Turonian boundary (93.9 Ma), was an episode of major perturbations in the global carbon cycle. To investigate the response of biota and the paleoceanographic conditions across this event, we present data from International Ocean Discovery Program sites U1513 and U1516 in the Mentelle Basin (offshore SW Australia; paleolatitude 59°-60°S in the mid-Cretaceous) that register the first complete records of OAE 2 at southern high latitudes. Calcareous nannofossils provide a reliable bio-chronostratigraphic framework. The distribution and abundance patterns of planktonic and benthic foraminifera, radiolaria, and calcispheres permit interpretation of the dynamics of the water mass stratification and provide support for the paleobathymetric reconstruction of the two sites, with Site U1513 located northwest of the Mentelle Basin depocenter and at a deeper depth than Site U1516. The lower OAE 2 interval is characterized by reduced water mass stratification with alternating episodes of enhanced surface water productivity and variations of the thickness of the mixed layer as indicated by the fluctuations in abundance of the intermediate dwelling planktonic foraminifera. The middle OAE 2 interval contains lithologies composed almost entirely of radiolaria reflecting extremely high marine productivity; the low CaCO3 content is consistent with marked shoaling of the Carbonate Compensation Depth and ocean acidification because of CaCO3 undersaturation. Conditions moderated after deposition of the silica-rich, CaCO3-poor rocks as reflected by the microfossil changes indicating a relatively stable water column although episodes of enhanced eutrophy did continue into the lower Turonian at Site U1516.

12.
Nature ; 609(7929): 975-985, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36104561

RESUMO

Understanding cell state transitions and purposefully controlling them is a longstanding challenge in biology. Here we present cell state transition assessment and regulation (cSTAR), an approach for mapping cell states, modelling transitions between them and predicting targeted interventions to convert cell fate decisions. cSTAR uses omics data as input, classifies cell states, and develops a workflow that transforms the input data into mechanistic models that identify a core signalling network, which controls cell fate transitions by influencing whole-cell networks. By integrating signalling and phenotypic data, cSTAR models how cells manoeuvre in Waddington's landscape1 and make decisions about which cell fate to adopt. Notably, cSTAR devises interventions to control the movement of cells in Waddington's landscape. Testing cSTAR in a cellular model of differentiation and proliferation shows a high correlation between quantitative predictions and experimental data. Applying cSTAR to different types of perturbation and omics datasets, including single-cell data, demonstrates its flexibility and scalability and provides new biological insights. The ability of cSTAR to identify targeted perturbations that interconvert cell fates will enable designer approaches for manipulating cellular development pathways and mechanistically underpinned therapeutic interventions.


Assuntos
Diferenciação Celular , Modelos Biológicos , Transdução de Sinais , Proliferação de Células , Conjuntos de Dados como Assunto , Fenótipo , Análise de Célula Única , Fluxo de Trabalho
13.
Int J Mol Sci ; 23(18)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36142853

RESUMO

Engagement of the sarcoplasmic reticulum (SR) Ca2+ stores for excitation-contraction (EC)-coupling is a fundamental feature of cardiac muscle cells. Extracellular matrix (ECM) proteins that form the extracellular scaffolding supporting cardiac contractile activity are thought to play an integral role in the modulation of EC-coupling. At baseline, human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) show poor utilisation of SR Ca2+ stores, leading to inefficient EC-coupling, like developing or human CMs in cardiac diseases such as heart failure. We hypothesised that integrin ligand-receptor interactions between ECM proteins and CMs recruit the SR to Ca2+ cycling during EC-coupling. hiPSC-CM monolayers were cultured on fibronectin-coated glass before 24 h treatment with fibril-forming peptides containing the integrin-binding tripeptide sequence arginine-glycine-aspartic acid (2 mM). Micropipette application of 40 mM caffeine in standard or Na+/Ca2+-free Tyrode's solutions was used to assess the Ca2+ removal mechanisms. Microelectrode recordings were conducted to analyse action potentials in current-clamp. Confocal images of labelled hiPSC-CMs were analysed to investigate hiPSC-CM morphology and ultrastructural arrangements in Ca2+ release units. This study demonstrates that peptides containing the integrin-binding sequence arginine-glycine-aspartic acid (1) abbreviate hiPSC-CM Ca2+ transient and action potential duration, (2) increase co-localisation between L-type Ca2+ channels and ryanodine receptors involved in EC-coupling, and (3) increase the rate of SR-mediated Ca2+ cycling. We conclude that integrin-binding peptides induce recruitment of the SR for Ca2+ cycling in EC-coupling through functional and structural improvements and demonstrate the importance of the ECM in modulating cardiomyocyte function in physiology.


Assuntos
Células-Tronco Pluripotentes Induzidas , Retículo Sarcoplasmático , Arginina/metabolismo , Ácido Aspártico/metabolismo , Cafeína/farmacologia , Cálcio/metabolismo , Fibronectinas/metabolismo , Glicina/metabolismo , Humanos , Integrinas/metabolismo , Ligantes , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo
14.
Paleoceanogr Paleoclimatol ; 37(1): e2021PA004353, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35910494

RESUMO

The latest Cenomanian to Santonian sedimentary record recovered at IODP Expedition 369 Site U1513 in the Mentelle Basin (SE Indian Ocean, paleolatitude 60°S at 85 Ma) is studied to interpret the paleoceanographic evolution in the Southern Hemisphere. The planktonic foraminiferal assemblage changes, the depth ecology preferences of different species, and the surface and seafloor temperature inferred from the stable isotopic values measured on foraminiferal tests provide meaningful information to the understanding of the Late Cretaceous climate. The hothouse climate during the Turonian-Santonian, characterized by weak latitudinal temperature gradients and high atmospheric CO2 concentrations, is followed by a progressive cooling during the Campanian. At Site U1513 the beginning of this climatic transition is nicely recorded within the Santonian, as indicated by an ∼1‰ increase in δ18O values of planktonic foraminifera suggesting a decline in surface water paleotemperatures of 4°C. The onset of cooling is mirrored by changes in the planktonic foraminiferal assemblages including extinctions among surface and deep dwellers, appearances and diversification of newly evolving taxa, and changes from predominantly epifaunal oxic to infaunal dysoxic/suboxic taxa among co-occurring benthic foraminifera. Overall, the data presented here document an interval in the Santonian during which the rate of southern high latitude cooling increased. Both surface and bottom waters were affected, although the cooling signal is more evident in the data for surface waters. This pattern of cooling ascribes the deterioration of the Late Cretaceous climate to decreased CO2 in the atmosphere and changes in the oceanic circulation correlated with enhanced meridional circulation.

15.
Explor Target Antitumor Ther ; 3: 97-116, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35441158

RESUMO

Aim: A model of progressively endocrine-resistant breast cancer was investigated to identify changes that can occur in signaling pathways after endocrine manipulation. Methods: The MCF7 breast cancer model is sensitive to estrogens and anti-estrogens while variant lines previously derived from wild-type MCF7 are either relatively 17ß-estradiol (E2)-insensitive (LCC1) or fully resistant to estrogen and anti-estrogens (LCC9). Results: In LCC1 and LCC9 cell lines, loss of estrogen sensitivity was accompanied by loss of growth response to transforming growth factor alpha (TGFα), heregulin-beta and pertuzumab. LCC1 and LCC9 cells had enhanced AKT phosphorylation relative to MCF7 which was reflected in downstream activation of phospho-mechanistic target of rapamycin (mTOR), phospho-S6, and phospho-estrogen receptor alpha Ser167 [ERα(Ser167)]. Both AKT2 and AKT3 were phosphorylated in the resistant cell lines, but small interfering RNA (siRNA) knockdown suggested that all three AKT isoforms contributed to growth response. ERα(Ser118) phosphorylation was increased by E2 and TGFα in MCF7, by E2 only in LCC1, but by neither in LCC9 cells. Multiple alterations in E2-mediated cell cycle control were identified in the endocrine-resistant cell lines including increased expression of MYC, cyclin A1, cyclin D1, cyclin-dependent kinase 1 (CDK1), CDK2, and hyperphosphorylated retinoblastoma protein (ppRb), whereas p21 and p27 were reduced. Estrogen modulated expression of these regulators in MCF7 and LCC1 cells but not in LCC9 cells. Seliciclib inhibited CDK2 activation in MCF7 cells but not in resistant variants; in all lines, it reduced ppRb, increased p53 associated responses including p21, p53 up-regulated modulator of apoptosis (PUMA), and p53 apoptosis-inducing protein 1 (p53AIP1), inhibited growth, and produced G2/M block and apoptosis. Conclusions: Multiple changes occur with progression of endocrine resistance in this model with AKT activation contributing to E2 insensitivity and loss of ERα(Ser118) phosphorylation being associated with full resistance. Cell cycle regulation is modified in endocrine-resistant breast cancer cells, and seliciclib is effective in both endocrine-sensitive and resistant diseases.

16.
Cells ; 11(7)2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35406735

RESUMO

Cardiac fibroblasts regulate the development of the adult cardiomyocyte phenotype and cardiac remodeling in disease. We investigate the role that cardiac fibroblasts-secreted extracellular vesicles (EVs) have in the modulation of cardiomyocyte Ca2+ cycling-a fundamental mechanism in cardiomyocyte function universally altered during disease. EVs collected from cultured human cardiac ventricular fibroblasts were purified by centrifugation, ultrafiltration and size-exclusion chromatography. The presence of EVs and EV markers were identified by dot blot analysis and electron microscopy. Fibroblast-conditioned media contains liposomal particles with a characteristic EV phenotype. EV markers CD9, CD63 and CD81 were highly expressed in chromatography fractions that elute earlier (Fractions 1-15), with most soluble contaminating proteins in the later fractions collected (Fractions 16-30). Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) were treated with fibroblast-secreted EVs and intracellular Ca2+ transients were analyzed. Fibroblast-secreted EVs abbreviate the Ca2+ transient time to peak and time to 50% decay versus serum-free controls. Thus, EVs from human cardiac fibroblasts represent a novel mediator of human fibroblast-cardiomyocyte interaction, increasing the efficiency of hiPSC-CM Ca2+ handling.


Assuntos
Vesículas Extracelulares , Células-Tronco Pluripotentes Induzidas , Cálcio/metabolismo , Vesículas Extracelulares/metabolismo , Fibroblastos , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo
17.
Br J Pharmacol ; 179(9): 2037-2053, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34855992

RESUMO

BACKGROUND AND PURPOSE: Sudden cardiac death (SCD) caused by acute myocardial ischaemia and ventricular fibrillation (VF) is an unmet therapeutic need. Lidocaine suppresses ischaemia-induced VF, but its utility is limited by side effects and a narrow therapeutic index. Here, we characterise OCT2013, a putative ischaemia-activated prodrug of lidocaine. EXPERIMENTAL APPROACH: The rat Langendorff-perfused isolated heart, anaesthetised rat and rat ventricular myocyte preparations were utilised in a series of blinded and randomised studies to investigate the antiarrhythmic effectiveness, adverse effects and mechanism of action of OCT2013, compared with lidocaine. KEY RESULTS: In isolated hearts, OCT2013 and lidocaine prevented ischaemia-induced VF equi-effectively, but OCT2013 did not share lidocaine's adverse effects (PR widening, bradycardia and negative inotropy). In anaesthetised rats, i.v. OCT2013 and lidocaine suppressed VF and increased survival equi-effectively; OCT2013 had no effect on cardiac output even at 64 mg·kg-1 i.v., whereas lidocaine reduced it even at 1 mg·kg-1 . In adult rat ventricular myocytes, OCT2013 had no effect on Ca2+ handling, whereas lidocaine impaired it. In paced isolated hearts, lidocaine caused rate-dependent conduction slowing and block, whereas OCT2013 was inactive. However, during regional ischaemia, OCT2013 and lidocaine equi-effectively hastened conduction block. Chromatography and MS analysis revealed that OCT2013, detectable in normoxic OCT2013-perfused hearts, became undetectable during global ischaemia, with lidocaine becoming detectable. CONCLUSIONS AND IMPLICATIONS: OCT2013 is inactive but is bio-reduced locally in ischaemic myocardium to lidocaine, acting as an ischaemia-activated and ischaemia-selective antiarrhythmic prodrug with a large therapeutic index, mimicking lidocaine's benefit without adversity.


Assuntos
Isquemia Miocárdica , Pró-Fármacos , Animais , Antiarrítmicos/farmacologia , Isquemia , Lidocaína/farmacologia , Isquemia Miocárdica/complicações , Isquemia Miocárdica/tratamento farmacológico , Pró-Fármacos/farmacologia , Ratos , Ratos Wistar , Fibrilação Ventricular
18.
Mol Oncol ; 16(5): 1072-1090, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34856074

RESUMO

A more comprehensive understanding of how cells respond to drug intervention, the likely immediate signalling responses and how resistance may develop within different microenvironments will help inform treatment regimes. The nonreceptor tyrosine kinase SRC regulates many cellular signalling processes, and pharmacological inhibition has long been a target of cancer drug discovery projects. Here, we describe the in vitro and in vivo characterisation of the small-molecule SRC inhibitor AZD0424. We show that AZD0424 potently inhibits the phosphorylation of tyrosine-419 of SRC (IC50 ~ 100 nm) in many cancer cell lines; however, inhibition of cell viability, via a G1 cell cycle arrest, was observed only in a subset of cancer cell lines in the low (on target) micromolar range. We profiled the changes in intracellular pathway signalling in cancer cells following exposure to AZD0424 and other targeted therapies using reverse-phase protein array (RPPA) analysis. We demonstrate that SRC is activated in response to treatment of KRAS-mutant colorectal cell lines with MEK inhibitors (trametinib or AZD6244) and that AZD0424 abrogates this. Cell lines treated with trametinib or AZD6244 in combination with AZD0424 had reduced EGFR, FAK and SRC compensatory activation, and cell viability was synergistically inhibited. In vivo, trametinib treatment of mice-bearing HCT116 tumours increased phosphorylation of SRC on Tyr419, and, when combined with AZD0424, inhibition of tumour growth was greater than with trametinib alone. We also demonstrate that drug-induced resistance to trametinib is not re-sensitised by AZD0424 treatment in vitro, likely as a result of multiple compensatory signalling mechanisms; however, inhibition of SRC remains an effective way to block invasion of trametinib-resistant tumour cells. These data imply that SRC inhibition may offer a useful addition to MEK inhibitor combination strategies.


Assuntos
Neoplasias , Quinazolinas , Animais , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Quinazolinas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Br J Pharmacol ; 179(11): 2558-2563, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34698387

RESUMO

Flecainide is used to treat catecholaminergic polymorphic ventricular tachycardia (CPVT), an arrhythmia caused by disrupted cellular Ca2+ handling following ß-adrenergic stimulation. The clinical efficacy of flecainide in this context involves complex effects on multiple ion channels that may be influenced by the disease state. A compelling narrative has been constructed around flecainide's nonselective block of sarcoplasmic reticulum (SR) lumen-to-cytoplasm Ca2+ release through intracellular calcium release channels (RyR2). However, ion fluxes across the SR membrane during heart contraction are bidirectional, and here, we review experimental evidence that flecainide's principal action on RyR2 involves the partial block of ion flow in the cytoplasm-to-lumen direction (i.e., flecainide inhibits RyR2-mediated SR 'countercurrent'). Experimental approaches that could advance new knowledge on the mechanism of RyR2 block by flecainide are proposed. Some impediments to progress in this area, that must be overcome to enable the development of superior drugs to treat CPVT, are also considered.


Assuntos
Flecainida , Taquicardia Ventricular , Antiarrítmicos/farmacologia , Antiarrítmicos/uso terapêutico , Cálcio/metabolismo , Flecainida/farmacologia , Flecainida/uso terapêutico , Humanos , Mutação , Miócitos Cardíacos , Canal de Liberação de Cálcio do Receptor de Rianodina , Retículo Sarcoplasmático , Taquicardia Ventricular/tratamento farmacológico
20.
Oncogene ; 40(44): 6235-6247, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34556814

RESUMO

ISG15 is an ubiquitin-like modifier that is associated with reduced survival rates in breast cancer patients. The mechanism by which ISG15 achieves this however remains elusive. We demonstrate that modification of Rab GDP-Dissociation Inhibitor Beta (GDI2) by ISG15 (ISGylation) alters endocytic recycling of the EGF receptor (EGFR) in non-interferon stimulated cells using CRISPR-knock out models for ISGylation. By regulating EGFR trafficking, ISGylation enhances EGFR recycling and sustains Akt-signalling. We further show that Akt signalling positively correlates with levels of ISG15 and its E2-ligase in basal breast cancer cohorts, confirming the link between ISGylation and Akt signalling in human tumours. Persistent and enhanced Akt activation explains the more aggressive tumour behaviour observed in human breast cancers. We show that ISGylation can act as a driver of tumour progression rather than merely being a bystander.


Assuntos
Neoplasias da Mama/metabolismo , Citocinas/genética , Citocinas/metabolismo , Inibidores de Dissociação do Nucleotídeo Guanina/metabolismo , Ubiquitinas/genética , Ubiquitinas/metabolismo , Neoplasias da Mama/genética , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Endocitose , Receptores ErbB/metabolismo , Feminino , Técnicas de Inativação de Genes , Humanos , Fosforilação , Prognóstico , Proteômica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...