Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 36(29): 7786-801, 2016 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-27445154

RESUMO

UNLABELLED: As neural structures grow in size and increase metabolic demand, the CNS vasculature undergoes extensive growth, remodeling, and maturation. Signals from neural tissue act on endothelial cells to stimulate blood vessel ingression, vessel patterning, and acquisition of mature brain vascular traits, most notably the blood-brain barrier. Using mouse genetic and in vitro approaches, we identified retinoic acid (RA) as an important regulator of brain vascular development via non-cell-autonomous and cell-autonomous regulation of endothelial WNT signaling. Our analysis of globally RA-deficient embryos (Rdh10 mutants) points to an important, non-cell-autonomous function for RA in the development of the vasculature in the neocortex. We demonstrate that Rdh10 mutants have severe defects in cerebrovascular development and that this phenotype correlates with near absence of endothelial WNT signaling, specifically in the cerebrovasculature, and substantially elevated expression of WNT inhibitors in the neocortex. We show that RA can suppress the expression of WNT inhibitors in neocortical progenitors. Analysis of vasculature in non-neocortical brain regions suggested that RA may have a separate, cell-autonomous function in brain endothelial cells to inhibit WNT signaling. Using both gain and loss of RA signaling approaches, we show that RA signaling in brain endothelial cells can inhibit WNT-ß-catenin transcriptional activity and that this is required to moderate the expression of WNT target Sox17. From this, a model emerges in which RA acts upstream of the WNT pathway via non-cell-autonomous and cell-autonomous mechanisms to ensure the formation of an adequate and stable brain vascular plexus. SIGNIFICANCE STATEMENT: Work presented here provides novel insight into important yet little understood aspects of brain vascular development, implicating for the first time a factor upstream of endothelial WNT signaling. We show that RA is permissive for cerebrovascular growth via suppression of WNT inhibitor expression in the neocortex. RA also functions cell-autonomously in brain endothelial cells to modulate WNT signaling and its downstream target, Sox17. The significance of this is although endothelial WNT signaling is required for neurovascular development, too much endothelial WNT signaling, as well as overexpression of its target Sox17, are detrimental. Therefore, RA may act as a "brake" on endothelial WNT signaling and Sox17 to ensure normal brain vascular development.


Assuntos
Encéfalo/citologia , Ventrículos Cerebrais/citologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Receptor alfa de Ácido Retinoico/metabolismo , Tretinoína/metabolismo , Via de Sinalização Wnt/fisiologia , Fatores Etários , Oxirredutases do Álcool/deficiência , Oxirredutases do Álcool/genética , Animais , Encéfalo/embriologia , Diferenciação Celular , Células Cultivadas , Ventrículos Cerebrais/embriologia , Embrião de Mamíferos , Células Endoteliais/metabolismo , Efrinas/genética , Efrinas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Receptor alfa de Ácido Retinoico/genética , Tretinoína/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , Via de Sinalização Wnt/genética , beta Catenina/genética , beta Catenina/metabolismo , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
2.
BMC Neurosci ; 17(1): 49, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27422020

RESUMO

BACKGROUND: Perivascular stromal cells (PSCs) are a recently identified cell type that comprises a small percentage of the platelet derived growth factor receptor-ß+ cells within the CNS perivascular space. PSCs are activated following injury to the brain or spinal cord, expand in number and contribute to fibrotic scar formation within the injury site. Beyond fibrosis, their high density in the lesion core makes them a potential significant source of signals that act on neural cells adjacent to the lesion site. RESULTS: Our developmental analysis of PSCs, defined by expression of Collagen1a1 in the maturing brain, revealed that PSCs first appear postnatally and may originate from the meninges. PSCs express many of the same markers as meningeal fibroblasts, including expression of the retinoic acid (RA) synthesis proteins Raldh1 and Raldh2. Using a focal brain ischemia injury model to induce PSC activation and expansion, we show a substantial increase in Raldh1+/Raldh2+ PSCs and Raldh1+ activated macrophages in the lesion core. We find that RA levels are significantly elevated in the ischemic hemisphere and induce signaling in astrocytes and neurons in the peri-infarct region. CONCLUSIONS: This study highlights a dual role for activated, non-neural cells where PSCs deposit fibrotic ECM proteins and, along with macrophages, act as a potentially important source of RA, a potent signaling molecule that could influence recovery events in a neuroprotective fashion following brain injury.


Assuntos
Encéfalo/metabolismo , Colágeno Tipo I/metabolismo , Pericitos/metabolismo , Acidente Vascular Cerebral/metabolismo , Tretinoína/metabolismo , Animais , Animais Recém-Nascidos , Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Cadeia alfa 1 do Colágeno Tipo I , Modelos Animais de Doenças , Imuno-Histoquímica , Infarto da Artéria Cerebral Média , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Transgênicos , Pericitos/patologia , Acidente Vascular Cerebral/patologia , Células Estromais/metabolismo , Células Estromais/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...