Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glycobiology ; 34(6)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38760939

RESUMO

Genetic deficiency of alpha-L-iduronidase causes mucopolysaccharidosis type I (MPS-I) disease, due to accumulation of glycosaminoglycans (GAGs) including chondroitin/dermatan sulfate (CS/DS) and heparan sulfate (HS) in cells. Currently, patients are treated by infusion of recombinant iduronidase or by hematopoietic stem cell transplantation. An alternative approach is to reduce the L-iduronidase substrate, through limiting the biosynthesis of iduronic acid. Our earlier study demonstrated that ebselen attenuated GAGs accumulation in MPS-I cells, through inhibiting iduronic acid producing enzymes. However, ebselen has multiple pharmacological effects, which prevents its application for MPS-I. Thus, we continued the study by looking for novel inhibitors of dermatan sulfate epimerase 1 (DS-epi1), the main responsible enzyme for production of iduronic acid in CS/DS chains. Based on virtual screening of chemicals towards chondroitinase AC, we constructed a library with 1,064 compounds that were tested for DS-epi1 inhibition. Seventeen compounds were identified to be able to inhibit 27%-86% of DS-epi1 activity at 10 µM. Two compounds were selected for further investigation based on the structure properties. The results show that both inhibitors had a comparable level in inhibition of DS-epi1while they had negligible effect on HS epimerase. The two inhibitors were able to reduce iduronic acid biosynthesis in CS/DS and GAG accumulation in WT and MPS-I fibroblasts. Docking of the inhibitors into DS-epi1 structure shows high affinity binding of both compounds to the active site. The collected data indicate that these hit compounds may be further elaborated to a potential lead drug used for attenuation of GAGs accumulation in MPS-I patients.


Assuntos
Inibidores Enzimáticos , Fibroblastos , Glicosaminoglicanos , Mucopolissacaridose I , Mucopolissacaridose I/tratamento farmacológico , Mucopolissacaridose I/metabolismo , Mucopolissacaridose I/patologia , Humanos , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Glicosaminoglicanos/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Carboidratos Epimerases/metabolismo , Carboidratos Epimerases/antagonistas & inibidores , Carboidratos Epimerases/genética , Simulação de Acoplamento Molecular , Antígenos de Neoplasias , Proteínas de Ligação a DNA , Proteínas de Neoplasias
2.
Intensive Care Med Exp ; 11(1): 63, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37733256

RESUMO

Sepsis is a condition with high morbidity and mortality. Prompt recognition and initiation of treatment is essential. Despite forming an integral part of sepsis management, fluid resuscitation may also lead to volume overload, which in turn is associated with increased mortality. The optimal fluid strategy in sepsis resuscitation is yet to be defined. Hyaluronan, an endogenous glycosaminoglycan with high affinity to water is an important constituent of the endothelial glycocalyx. We hypothesized that exogenously administered hyaluronan would counteract intravascular volume depletion and contribute to endothelial glycocalyx integrity in a fluid restrictive model of peritonitis. In a prospective, blinded model of porcine peritonitis sepsis, we randomized animals to intervention with hyaluronan (n = 8) or 0.9% saline (n = 8). The animals received an infusion of 0.1% hyaluronan 6 ml/kg/h, or the same volume of saline, during the first 2 h of peritonitis. Stroke volume variation and hemoconcentration were comparable in the two groups throughout the experiment. Cardiac output was higher in the intervention group during the infusion of hyaluronan (3.2 ± 0.5 l/min in intervention group vs 2.7 ± 0.2 l/min in the control group) (p = 0.039). The increase in lactate was more pronounced in the intervention group (3.2 ± 1.0 mmol/l in the intervention group and 1.7 ± 0.7 mmol/l in the control group) at the end of the experiment (p < 0.001). Concentrations of surrogate markers of glycocalyx damage; syndecan 1 (0.6 ± 0.2 ng/ml vs 0.5 ± 0.2 ng/ml, p = 0.292), heparan sulphate (1.23 ± 0.2 vs 1.4 ± 0.3 ng/ml, p = 0.211) and vascular adhesion protein 1 (7.0 ± 4.1 vs 8.2 ± 2.3 ng/ml, p = 0.492) were comparable in the two groups at the end of the experiment. In conclusion, hyaluronan did not counteract intravascular volume depletion in early peritonitis sepsis. However, this finding is hampered by the short observation period and a beneficial effect of HMW-HA in peritonitis sepsis cannot be discarded based on the results of the present study.

3.
Carbohydr Polym ; 299: 120191, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36876765

RESUMO

Glucuronyl 5-epimerase (Hsepi) converts D-glucuronic acid (GlcA) into L-iduronic acid (IdoA) units, through a mechanism involving reversible abstraction of a proton at C5 of hexuronic acid residues. Incubations of a [4GlcAß1-4GlcNSO3α1-]n precursor substrate with recombinant enzymes in a D2O/H2O medium enabled an isotope exchange approach to the assessment of functional interactions of Hsepi with hexuronyl 2-O-sulfotransferase (Hs2st) and glucosaminyl 6-O-sulfotransferase (Hs6st), both involved in the final polymer-modification steps. Enzyme complexes were supported by computational modeling and homogeneous time resolved fluorescence. GlcA and IdoA D/H ratios related to product composition revealed kinetic isotope effects that were interpreted in terms of efficiency of the coupled epimerase and sulfotransferase reactions. Evidence for a functional Hsepi/Hs6st complex was provided by selective incorporation of D atoms into GlcA units adjacent to 6-O-sulfated glucosamine residues. The inability to achieve simultaneous 2-O- and 6-O-sulfation in vitro supported topologically separated reactions in the cell. These findings provide novel insight into the roles of enzyme interactions in heparan sulfate biosynthesis.


Assuntos
Ácido Idurônico , Complexos Multienzimáticos , Ácido Glucurônico , Polímeros , Prótons , Racemases e Epimerases , Sulfotransferases , Heparitina Sulfato
4.
Chembiochem ; 24(4): e202200619, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36453606

RESUMO

1-Azasugar analogues of l-iduronic acid (l-IdoA) and d-glucuronic acid (d-GlcA) and their corresponding enantiomers have been synthesized as potential pharmacological chaperones for mucopolysaccharidosis I (MPS I), a lysosomal storage disease caused by mutations in the gene encoding α-iduronidase (IDUA). The compounds were efficiently synthesized in nine or ten steps from d- or l-arabinose, and the structures were confirmed by X-ray crystallographic analysis of key intermediates. All compounds were inactive against IDUA, although l-IdoA-configured 8 moderately inhibited ß-glucuronidase (ß-GLU). The d-GlcA-configured 9 was a potent inhibitor of ß-GLU and a moderate inhibitor of the endo-ß-glucuronidase heparanase. Co-crystallization of 9 with heparanase revealed that the endocyclic nitrogen of 9 forms close interactions with both the catalytic acid and catalytic nucleophile.


Assuntos
Iduronidase , Mucopolissacaridose I , Humanos , Iduronidase/química , Iduronidase/genética , Ácidos Urônicos , Glucuronidase/química , Mucopolissacaridose I/genética
5.
Int J Mol Sci ; 23(9)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35563215

RESUMO

Heparin is a polysaccharide expressed in animal connective tissue-type mast cells. Owing to the special pentasaccharide sequence, heparin specifically binds to antithrombin (AT) and increases the inhibitory activity of AT towards coagulation enzymes. Heparin isolated from porcine intestinal mucosa has an average molecular weight of 15 kDa, while heparins recovered from rat skin and the peritoneal cavity were 60-100 kDa and can be fragmented by the endo-glucuronidase heparanase in vitro. In this study, we have examined heparin isolated from in vitro matured fetal skin mast cells (FSMC) and peritoneal cavity mast cells (PCMC) collected from wildtype (WT), heparanase knockout (Hpa-KO), and heparanase overexpressing (Hpa-tg) mice. The metabolically 35S-labeled heparin products from the mast cells of WT, Hpa-KO, and Hpa-tg mice were compared and analyzed for molecular size and AT-binding activity. The results show that PCMC produced heparins with a size similar to heparin from porcine intestinal mast cells, whilst FSMC produced much longer chains. As expected, heparanase overexpression resulted in the generation of smaller fragments in both cell types, while heparins recovered from heparanase knockout cells were slightly longer than heparin from WT cells. Unexpectedly, we found that heparanase expression affected the production of total glycosaminoglycans (GAGs) and the proportion between heparin and other GAGs but essentially had no effect on heparin catabolism.


Assuntos
Glucuronidase , Mastócitos , Animais , Anticoagulantes/metabolismo , Antitrombinas/metabolismo , Glucuronidase/metabolismo , Glicosaminoglicanos/metabolismo , Heparina/química , Mastócitos/metabolismo , Camundongos , Ratos , Suínos
7.
Glycobiology ; 31(10): 1319-1329, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34192316

RESUMO

Mucopolysaccharidosis type I (MPS-I) is a rare lysosomal storage disorder caused by deficiency of the enzyme alpha-L-iduronidase, which removes iduronic acid in both chondroitin/dermatan sulfate (CS/DS) and heparan sulfate (HS) and thereby contributes to the catabolism of glycosaminoglycans (GAGs). To ameliorate this genetic defect, the patients are currently treated by enzyme replacement and bone marrow transplantation, which have a number of drawbacks. This study was designed to develop an alternative treatment by inhibition of iduronic acid formation. By screening the Prestwick drug library, we identified ebselen as a potent inhibitor of enzymes that produce iduronic acid in CS/DS and HS. Ebselen efficiently inhibited iduronic acid formation during CS/DS synthesis in cultured fibroblasts. Treatment of MPS-I fibroblasts with ebselen not only reduced accumulation of CS/DS but also promoted GAG degradation. In early Xenopus embryos, this drug phenocopied the effect of downregulation of DS-epimerase 1, the main enzyme responsible for iduronic production in CS/DS, suggesting that ebselen inhibits iduronic acid production in vivo. However, ebselen failed to ameliorate the CS/DS and GAG burden in MPS-I mice. Nevertheless, the results propose a potential of iduronic acid substrate reduction therapy for MPS-I patients.


Assuntos
Fibroblastos/efeitos dos fármacos , Glicosaminoglicanos/antagonistas & inibidores , Ácido Idurônico/antagonistas & inibidores , Isoindóis/farmacologia , Mucopolissacaridose I/tratamento farmacológico , Compostos Organosselênicos/farmacologia , Relação Dose-Resposta a Droga , Fibroblastos/metabolismo , Fibroblastos/patologia , Glicosaminoglicanos/metabolismo , Células HEK293 , Humanos , Ácido Idurônico/metabolismo , Isoindóis/química , Estrutura Molecular , Mucopolissacaridose I/metabolismo , Mucopolissacaridose I/patologia , Compostos Organosselênicos/química , Relação Estrutura-Atividade
8.
Glycobiology ; 29(6): 446-451, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30869126

RESUMO

The glycosaminoglycan dermatan sulfate (DS) is a well-known activator of heparin cofactor II-dependent inactivation of thrombin. In contrast to heparin, dermatan sulfate has never been prepared recombinantly from material of non-animal origin. Here we report on the enzymatic synthesis of structurally well-defined DS with high anticoagulant activity. Using a microbial K4 polysaccharide and the recombinant enzymes DS-epimerase 1, dermatan 4-O-sulfotransferase 1, uronyl 2-O-sulfotransferase and N-acetylgalactosamine 4-sulfate 6-O-sulfotransferase, several new glycostructures have been prepared, such as a homogenously sulfated IdoA-GalNAc-4S polymer and its 2-O-, 6-O- and 2,6-O-sulfated derivatives. Importantly, the recombinant highly 2,4-O-sulfated DS inhibits thrombin via heparin cofactor II, approximately 20 times better than heparin, enabling manipulation of vascular and extravascular coagulation. The potential of this method can be extended to preparation of specific structures that are of importance for binding and activation of cytokines, and control of inflammation and metastasis, involving extravasation and migration.


Assuntos
Dermatan Sulfato/farmacologia , Cofator II da Heparina/metabolismo , Inibidores de Serina Proteinase/farmacologia , Trombina/antagonistas & inibidores , Configuração de Carboidratos , Dermatan Sulfato/síntese química , Dermatan Sulfato/química , Humanos , Modelos Moleculares , Inibidores de Serina Proteinase/síntese química , Inibidores de Serina Proteinase/química , Trombina/metabolismo
9.
J Biol Chem ; 293(35): 13725-13735, 2018 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-29976758

RESUMO

During the biosynthesis of chondroitin/dermatan sulfate (CS/DS), a variable fraction of glucuronic acid is converted to iduronic acid through the activities of two epimerases, dermatan sulfate epimerases 1 (DS-epi1) and 2 (DS-epi2). Previous in vitro studies indicated that without association with other enzymes, DS-epi1 activity produces structures that have only a few adjacent iduronic acid units. In vivo, concomitant with epimerization, dermatan 4-O-sulfotransferase 1 (D4ST1) sulfates the GalNAc adjacent to iduronic acid. This sulfation facilitates DS-epi1 activity and enables the formation of long blocks of sulfated iduronic acid-containing domains, which can be major components of CS/DS. In this report, we used recombinant enzymes to confirm the concerted action of DS-epi1 and D4ST1. Confocal microscopy revealed that these two enzymes colocalize to the Golgi, and FRET experiments indicated that they physically interact. Furthermore, FRET, immunoprecipitation, and cross-linking experiments also revealed that DS-epi1, DS-epi2, and D4ST1 form homomers and are all part of a hetero-oligomeric complex where D4ST1 directly interacts with DS-epi1, but not with DS-epi2. The cooperation of DS-epi1 with D4ST1 may therefore explain the processive mode of the formation of iduronic acid blocks. In conclusion, the iduronic acid-forming enzymes operate in complexes, similar to other enzymes active in glycosaminoglycan biosynthesis. This knowledge shed light on regulatory mechanisms controlling the biosynthesis of the structurally diverse CS/DS molecule.


Assuntos
Antígenos de Neoplasias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Dermatan Sulfato/metabolismo , Ácido Idurônico/metabolismo , Proteínas de Neoplasias/metabolismo , Sulfotransferases/metabolismo , Animais , Antígenos de Neoplasias/análise , Células COS , Chlorocebus aethiops , Proteínas de Ligação a DNA/análise , Humanos , Proteínas de Neoplasias/análise , Proteínas Recombinantes/análise , Proteínas Recombinantes/metabolismo , Sulfotransferases/análise
10.
Front Immunol ; 9: 206, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29472931

RESUMO

For full activation of naïve adaptive lymphocytes in skin-draining lymph nodes (LNs), presentation of peptide:MHC complexes by LN-resident and skin-derived dendritic cells (DCs) that encountered antigens (Ags) is an absolute prerequisite. To get to the nearest draining LN upon intradermal immunization, DCs need to migrate from the infection site to the afferent lymphatics, which can only be reached by traversing a collagen-dense network located in the dermis of the skin through the activity of proteolytic enzymes. Here, we show that mice with altered collagen fibrillogenesis resulting in thicker collagen fibers in the skin display a reduced DC migration to the draining LN upon immune challenge. Consequently, the initiation of the cellular and humoral immune response was diminished. Ag-specific CD8+ and CD4+ T cells as well as Ag-specific germinal center B cells and serum immunoglobulin levels were significantly decreased. Hence, we postulate that alterations to the production of extracellular matrix, as seen in various connective tissue disorders, may in the end affect the qualitative outcome of adaptive immunity.


Assuntos
Imunidade Adaptativa , Movimento Celular/imunologia , Dermatan Sulfato/metabolismo , Células de Langerhans/imunologia , Linfonodos/imunologia , Animais , Biópsia , Linfócitos T CD8-Positivos/imunologia , Carboidratos Epimerases/deficiência , Carboidratos Epimerases/genética , Dermatan Sulfato/imunologia , Feminino , Células de Langerhans/metabolismo , Linfonodos/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Pele/citologia , Pele/imunologia , Pele/patologia
11.
Orphanet J Rare Dis ; 13(1): 4, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29321044

RESUMO

BACKGROUND: TMEM199 deficiency was recently shown in four patients to cause liver disease with steatosis, elevated serum transaminases, cholesterol and alkaline phosphatase and abnormal protein glycosylation. There is no information on the long-term outcome in this disorder. RESULTS: We here present three novel patients with TMEM199-CDG. All three patients carried the same set of mutations (c.13-14delTT (p.Ser4Serfs*30) and c.92G > C (p.Arg31Pro), despite only two were related (siblings). One mutation (c.92G > C) was described previously whereas the other was deemed pathogenic due to its early frameshift. Western Blot analysis confirmed a reduced level of TMEM199 protein in patient fibroblasts and all patients showed a similar glycosylation defect. The patients presented with a very similar clinical and biochemical phenotype to the initial publication, confirming that TMEM199-CDG is a non-encephalopathic liver disorder. Two of the patients were clinically assessed over two decades without deterioration. CONCLUSION: A rising number of disorders affecting Golgi homeostasis have been published over the last few years. A hallmark finding is deficiency in protein glycosylation, both in N- and O-linked types. Most of these disorders have signs of both liver and brain involvement. However, the present and the four previously reported patients do not show encephalopathy but a chronic, non-progressive (over decades) liver disease with hypertransaminasemia and steatosis. This information is crucial for the patient/families and clinician at diagnosis, as it distinguishes it from other Golgi homeostasis disorders, in having a much more favorable course.


Assuntos
Hepatopatias/metabolismo , Proteínas de Membrana/metabolismo , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Ceruloplasmina/genética , Ceruloplasmina/metabolismo , Pré-Escolar , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/metabolismo , Feminino , Glicosilação , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Humanos , Fígado/metabolismo , Hepatopatias/genética , Masculino , Proteínas de Membrana/genética , Mutação , Transferrina/genética , Transferrina/metabolismo , Adulto Jovem
12.
PLoS One ; 13(1): e0191751, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29370293

RESUMO

Chondroitin sulfate (CS)/dermatan sulfate (DS) proteoglycans are abundant on the cell surface and in the extracellular matrix and have important functions in matrix structure, cell-matrix interaction and signaling. The DS epimerases 1 and 2, encoded by Dse and Dsel, respectively, convert CS to a CS/DS hybrid chain, which is structurally and conformationally richer than CS, favouring interaction with matrix proteins and growth factors. We recently showed that Xenopus Dse is essential for the migration of neural crest cells by allowing cell surface CS/DS proteoglycans to adhere to fibronectin. Here we investigate the expression of Dse and Dsel in Xenopus embryos. We show that both genes are maternally expressed and exhibit partially overlapping activity in the eyes, brain, trigeminal ganglia, neural crest, adenohypophysis, sclerotome, and dorsal endoderm. Dse is specifically expressed in the epidermis, anterior surface ectoderm, spinal nerves, notochord and dermatome, whereas Dsel mRNA alone is transcribed in the spinal cord, epibranchial ganglia, prechordal mesendoderm and myotome. The expression of the two genes coincides with sites of cell differentiation in the epidermis and neural tissue. Several expression domains can be linked to previously reported phenotypes of knockout mice and clinical manifestations, such as the Musculocontractural Ehlers-Danlos syndrome and psychiatric disorders.


Assuntos
Carboidratos Epimerases/genética , Regulação da Expressão Gênica no Desenvolvimento , Xenopus laevis/embriologia , Animais , Encéfalo/metabolismo , Hibridização In Situ , Sondas RNA , RNA Mensageiro/genética
13.
PLoS One ; 12(8): e0184028, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28859141

RESUMO

The main structural component of connective tissues is fibrillar, cross-linked collagen whose fibrillogenesis can be modulated by Small Leucine-Rich Proteins/Proteoglycans (SLRPs). Not all SLRPs' effects on collagen and extracellular matrix in vivo have been elucidated; one of the less investigated SLRPs is asporin. Here we describe the successful generation of an Aspn-/- mouse model and the investigation of the Aspn-/- skin phenotype. Functionally, Aspn-/- mice had an increased skin mechanical toughness, although there were no structural changes present on histology or immunohistochemistry. Electron microscopy analyses showed 7% thinner collagen fibrils in Aspn-/- mice (not statistically significant). Several matrix genes were upregulated, including collagens (Col1a1, Col1a2, Col3a1), matrix metalloproteinases (Mmp2, Mmp3) and lysyl oxidases (Lox, Loxl2), while lysyl hydroxylase (Plod2) was downregulated. Intriguingly no differences were observed in collagen protein content or in collagen cross-linking-related lysine oxidation or hydroxylation. The glycosaminoglycan content and structure in Aspn-/- skin was profoundly altered: chondroitin/dermatan sulfate was more than doubled and had an altered composition, while heparan sulfate was halved and had a decreased sulfation. Also, decorin and biglycan were doubled in Aspn-/- skin. Overall, asporin deficiency changes skin glycosaminoglycan composition, and decorin and biglycan content, which may explain the changes in skin mechanical properties.


Assuntos
Biglicano/genética , Decorina/genética , Proteínas da Matriz Extracelular/deficiência , Efeito Fundador , Regulação da Expressão Gênica , Pele/metabolismo , Aminoácido Oxirredutases/genética , Aminoácido Oxirredutases/metabolismo , Animais , Biglicano/metabolismo , Sulfatos de Condroitina/genética , Sulfatos de Condroitina/metabolismo , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Cadeia alfa 1 do Colágeno Tipo I , Colágeno Tipo III/genética , Colágeno Tipo III/metabolismo , Decorina/metabolismo , Dermatan Sulfato/análogos & derivados , Dermatan Sulfato/genética , Dermatan Sulfato/metabolismo , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/genética , Feminino , Heparitina Sulfato/genética , Heparitina Sulfato/metabolismo , Sulfato de Queratano/genética , Sulfato de Queratano/metabolismo , Masculino , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/genética , Metaloproteinase 3 da Matriz/metabolismo , Camundongos , Camundongos Knockout , Fenótipo , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/genética , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/metabolismo , Pele/ultraestrutura
14.
PLoS One ; 12(8): e0182973, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28827814

RESUMO

Tumor barrier function in carcinoma represents a major challenge to treatment and is therefore an attractive target for increasing drug delivery. Variables related to tumor barrier include aberrant blood vessels, high interstitial fluid pressure, and the composition and structure of the extracellular matrix. One of the proteins associated with dense extracellular matrices is fibromodulin, a collagen fibrillogenesis modulator expressed in tumor stroma but scarce in normal loose connective tissues. Here, we investigated the effects of fibromodulin on stroma ECM in a syngeneic murine colon carcinoma model. We show that fibromodulin deficiency decreased collagen fibril thickness but glycosaminoglycan content and composition were unchanged. Furthermore, vascular density, pericyte coverage and macrophage amount were unaffected. Fibromodulin can therefore be a unique effector of dense collagen matrix assembly in tumor stroma and, without affecting other major matrix components or the cellular composition, can function as a main agent in tumor barrier function.


Assuntos
Colágeno/metabolismo , Neoplasias do Colo/metabolismo , Modelos Animais de Doenças , Fibromodulina/deficiência , Glicosaminoglicanos/metabolismo , Animais , Linhagem Celular Tumoral , Neoplasias do Colo/patologia , Fibromodulina/genética , Camundongos , Camundongos Endogâmicos C57BL
15.
Int J Biochem Cell Biol ; 83: 27-38, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27974233

RESUMO

Idiopathic pulmonary fibrosis (IPF) is characterized by aberrant deposition of extracellular matrix (ECM) constituents, including glycosaminoglycans (GAGs), that may play a role in remodelling processes by influencing critical mediators such as growth factors. We hypothesize that GAGs may be altered in IPF and that this contribute to create a pro-fibrotic environment. The aim of this study was therefore to examine the fine structure of heparan sulfate (HS), chondroitin/dermatan sulfate (CS/DS) and hyaluronan (HA) in lung samples from IPF patients and from control subjects. GAGs in lung samples from severe IPF patients and donor lungs were analyzed with HPLC. HS was assessed by immunohistochemistry and collagen was quantified as hydroxyproline content. The total amount of HS, CS/DS and HA was increased in IPF lungs but there was no significant difference in the total collagen content. We found a relative increase in total sulfation of HS due to increment of 2-O, 6-O and N-sulfation and a higher proportion of sulfation in CS/DS. Highly sulfated HS was located in the border zone between denser areas and more normal looking alveolar parenchyma in basement membranes of blood vessels and airways, that were immuno-positive for perlecan, as well as on the cell surface of spindle-shaped cells in the alveolar interstitium. These findings show for the first time that both the amount and structure of glycosaminoglycans are altered in IPF. These changes may contribute to the tissue remodelling in IPF by altering growth factor retention and activity, creating a pro-fibrotic ECM landscape.


Assuntos
Glicosaminoglicanos/metabolismo , Heparitina Sulfato/química , Heparitina Sulfato/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Adulto , Idoso , Estudos de Casos e Controles , Sulfatos de Condroitina/metabolismo , Dermatan Sulfato/análogos & derivados , Dermatan Sulfato/metabolismo , Dissacarídeos/química , Dissacarídeos/metabolismo , Feminino , Proteoglicanas de Heparan Sulfato/metabolismo , Humanos , Hidroxiprolina/metabolismo , Fibrose Pulmonar Idiopática/patologia , Pulmão/metabolismo , Pulmão/patologia , Masculino , Pessoa de Meia-Idade , Estrutura Molecular , Sulfotransferases/metabolismo
16.
Mol Cancer Ther ; 15(10): 2455-2464, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27474147

RESUMO

A typical obstacle to cancer therapy is the limited distribution of low molecular weight anticancer drugs within the carcinoma tissue. In experimental carcinoma, imatinib (STI571) increases efficacy of synchronized chemotherapy, reduces tumor interstitial fluid pressure, and increases interstitial fluid volume. STI571 also increases the water-perfusable fraction in metastases from human colorectal adenocarcinomas. Because the mechanism(s) behind these effects have not been fully elucidated, we investigated the hypothesis that STI571 alters specific properties of the stromal extracellular matrix. We analyzed STI571-treated human colorectal KAT-4/HT-29 experimental carcinomas, known to have a well-developed stromal compartment, for solute exchange and glycosaminoglycan content, as well as collagen content, structure, and synthesis. MRI of STI571-treated KAT-4/HT-29 experimental carcinomas showed a significantly increased efficacy in dynamic exchanges of solutes between tumor interstitium and blood. This effect was paralleled by a distinct change of the stromal collagen network architecture, manifested by a decreased average collagen fibril diameter, and increased collagen turnover. The glycosaminoglycan content was unchanged. Furthermore, the apparent effects on the stromal cellular composition were limited to a reduction in an NG2-positive stromal cell population. The current data support the hypothesis that the collagen network architecture influences the dynamic exchanges of solutes between blood and carcinoma tissue. It is conceivable that STI571 reprograms distinct nonvascular stromal cells to produce a looser extracellular matrix, ultimately improving transport characteristics for traditional chemotherapeutic agents. Mol Cancer Ther; 15(10); 2455-64. ©2016 AACR.


Assuntos
Antineoplásicos/farmacologia , Carcinoma/metabolismo , Colágeno/metabolismo , Líquido Extracelular/metabolismo , Mesilato de Imatinib/farmacologia , Agregados Proteicos , Inibidores de Proteínas Quinases/farmacologia , Animais , Carcinoma/tratamento farmacológico , Carcinoma/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Camundongos , Pericitos/efeitos dos fármacos , Pericitos/metabolismo , Células Estromais/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Drug Discov Today ; 21(7): 1162-9, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27217160

RESUMO

Glycosaminoglycans (GAGs) are charged polysaccharides ubiquitously present at the cell surface and in the extracellular matrix. GAGs are crucial for cellular homeostasis, and their metabolism is altered during pathological processes. However, little consideration has been given to the regulation of the GAG milieu through pharmacological interventions. In this review, we provide a classification of small molecules affecting GAG metabolism based on their mechanism of action. Furthermore, we present evidence to show that clinically approved drugs affect GAG metabolism and that this could contribute to their therapeutic benefit.


Assuntos
Glicosaminoglicanos/metabolismo , Animais , Glicosaminoglicanos/antagonistas & inibidores , Humanos , Preparações Farmacêuticas , Fenômenos Farmacológicos
18.
Dis Model Mech ; 9(6): 607-20, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27101845

RESUMO

Of all live births with congenital anomalies, approximately one-third exhibit deformities of the head and face. Most craniofacial disorders are associated with defects in a migratory stem and progenitor cell population, which is designated the neural crest (NC). Musculocontractural Ehlers-Danlos syndrome (MCEDS) is a heritable connective tissue disorder with distinct craniofacial features; this syndrome comprises multiple congenital malformations that are caused by dysfunction of dermatan sulfate (DS) biosynthetic enzymes, including DS epimerase-1 (DS-epi1; also known as DSE). Studies in mice have extended our understanding of DS-epi1 in connective tissue maintenance; however, its role in fetal development is not understood. We demonstrate that DS-epi1 is important for the generation of isolated iduronic acid residues in chondroitin sulfate (CS)/DS proteoglycans in early Xenopus embryos. The knockdown of DS-epi1 does not affect the formation of early NC progenitors; however, it impairs the correct activation of transcription factors involved in the epithelial-mesenchymal transition (EMT) and reduces the extent of NC cell migration, which leads to a decrease in NC-derived craniofacial skeleton, melanocytes and dorsal fin structures. Transplantation experiments demonstrate a tissue-autonomous role for DS-epi1 in cranial NC cell migration in vivo Cranial NC explant and single-cell cultures indicate a requirement of DS-epi1 in cell adhesion, spreading and extension of polarized cell processes on fibronectin. Thus, our work indicates a functional link between DS and NC cell migration. We conclude that NC defects in the EMT and cell migration might account for the craniofacial anomalies and other congenital malformations in MCEDS, which might facilitate the diagnosis and development of therapies for this distressing condition. Moreover, the presented correlations between human DS-epi1 expression and gene sets of mesenchymal character, invasion and metastasis in neuroblastoma and malignant melanoma suggest an association between DS and NC-derived cancers.


Assuntos
Movimento Celular/efeitos dos fármacos , Dermatan Sulfato/farmacologia , Síndrome de Ehlers-Danlos/patologia , Fibronectinas/metabolismo , Músculos/patologia , Crista Neural/patologia , Animais , Sequência de Bases , Biomarcadores/metabolismo , Adesão Celular/efeitos dos fármacos , Polaridade Celular , Sulfatos de Condroitina/metabolismo , Síndrome de Ehlers-Danlos/genética , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Retroalimentação Fisiológica , Regulação da Expressão Gênica no Desenvolvimento , Ácido Idurônico/metabolismo , Modelos Biológicos , Neoplasias/patologia , Placa Neural/efeitos dos fármacos , Placa Neural/metabolismo , Racemases e Epimerases/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriologia , Xenopus laevis/genética
19.
Mol Med ; 22: 147-155, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26933843

RESUMO

Methionine adenosyltransferase (MAT) I/III deficiency can be inherited as autosomal dominant (AD) or as recessive (AR) traits in which mono- or biallelic MAT1A mutations have been identified, respectively. Although most patients have benign clinical outcomes, some with the AR form have neurological deficits. Here we describe 16 Korean patients with MAT I/III deficiency from 15 unrelated families identified by newborn screening. Ten probands had the AD MAT I/III deficiency, while six had AR MAT I/III deficiency. Plasma methionine (145.7 µmol/L versus 733.2 µmol/L, P < 0.05) and homocysteine levels (12.3 µmol/L versus 18.6 µmol/L, P < 0.05) were lower in the AD type than in AR type. In addition to the only reported AD MAT1A mutation, p.Arg264His, we identified two novel AD mutations, p.Arg249Gln and p.Gly280Arg. In the AR type, four previously reported and two novel mutations, p.Arg163Trp and p.Tyr335*, were identified. No exonic deletions were found by quantitative genomic polymerase chain reaction (PCR). Three-dimensional structural prediction programs indicated that the AD-type mutations were located on the dimer interface or in the substrate binding site, hindering MAT I/III dimerization or substrate binding, respectively, whereas the AR mutations were distant from the interface or substrate binding site. These results indicate that the AD or AR MAT I/III deficiency is correlated with clinical findings, substrate levels and structural features of the mutant proteins, which is important for the neurological management and genetic counseling of the patients.

20.
Chem Sci ; 7(2): 1447-1456, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26900446

RESUMO

Distinct from template-directed biosynthesis of nucleic acids and proteins, the enzymatic synthesis of heterogeneous polysaccharides is a complex process that is difficult to study using common analytical tools. Therefore, the mode of action and processivity of those enzymes are largely unknown. Dermatan sulfate epimerase 1 (DS-epi1) is the predominant enzyme during the formation of iduronic acid residues in the glycosaminoglycan dermatan sulfate. Using recombinant DS-epi1 as a model enzyme, we describe a tandem mass spectrometry-based method to study the mode of action of polysaccharide processing enzymes. The enzyme action on the substrate was monitored by hydrogen-deuterium exchange mass spectrometry and the sequence information was then fed into mathematical models with two different assumptions of the mode of action for the enzyme: processive reducing end to non-reducing end, and processive non-reducing end to reducing end. Model data was scored by correlation to experimental data and it was found that DS-epi1 attacks its substrate on a random position, followed by a processive mode of modification towards the non-reducing end and that the substrate affinity of the enzyme is negatively affected by each additional epimerization event. It could also be shown that the smallest active substrate was the reducing end uronic acid in a tetrasaccharide and that octasaccharides and longer oligosaccharides were optimal substrates. The method of using tandem mass spectrometry to generate sequence information of the complex enzymatic products in combination with in silico modeling can be potentially applied to study the mode of action of other enzymes involved in polysaccharide biosynthesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...