Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Cancer Res ; 29(16): 3214-3224, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37327318

RESUMO

PURPOSE: Laser interstitial thermal therapy (LITT) is an effective minimally invasive treatment option for intracranial tumors. Our group produced plasmonics-active gold nanostars (GNS) designed to preferentially accumulate within intracranial tumors and amplify the ablative capacity of LITT. EXPERIMENTAL DESIGN: The impact of GNS on LITT coverage capacity was tested in ex vivo models using clinical LITT equipment and agarose gel-based phantoms of control and GNS-infused central "tumors." In vivo accumulation of GNS and amplification of ablation were tested in murine intracranial and extracranial tumor models followed by intravenous GNS injection, PET/CT, two-photon photoluminescence, inductively coupled plasma mass spectrometry (ICP-MS), histopathology, and laser ablation. RESULTS: Monte Carlo simulations demonstrated the potential of GNS to accelerate and specify thermal distributions. In ex vivo cuboid tumor phantoms, the GNS-infused phantom heated 5.5× faster than the control. In a split-cylinder tumor phantom, the GNS-infused border heated 2× faster and the surrounding area was exposed to 30% lower temperatures, with margin conformation observed in a model of irregular GNS distribution. In vivo, GNS preferentially accumulated within intracranial tumors on PET/CT, two-photon photoluminescence, and ICP-MS at 24 and 72 hours and significantly expedited and increased the maximal temperature achieved in laser ablation compared with control. CONCLUSIONS: Our results provide evidence for use of GNS to improve the efficiency and potentially safety of LITT. The in vivo data support selective accumulation within intracranial tumors and amplification of laser ablation, and the GNS-infused phantom experiments demonstrate increased rates of heating, heat contouring to tumor borders, and decreased heating of surrounding regions representing normal structures.


Assuntos
Neoplasias Encefálicas , Hipertermia Induzida , Humanos , Animais , Camundongos , Ouro , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias Encefálicas/cirurgia , Hipertermia Induzida/métodos , Lasers
2.
Nanotechnology ; 33(47)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35961291

RESUMO

Bladder cancer has been ranked as one of the most commonly occurring cancers in men and women with approximately half of the diagnoses being the late stage and/or metastatic diseases. We have developed a novel cancer treatment by combining gold nanostar-mediated photothermal therapy with checkpoint inhibitor immunotherapy to treat bladder cancer. Experiment results with a murine animal model demonstrated that our developed photoimmunotherapy therapy is more efficacious than any individual studied treatment. In addition, we used intravital optical imaging with a dorsal skinfold window chamber animal model to study immune responses and immune cell accumulation in a distant tumor following our photoimmunotherapy. The mice used have the CX3CR1-GFP receptor on monocytes, natural killer cells, and dendritic cells allowing us to dynamically track their presence by fluorescence imaging. Our proof-of-principle study results showed that the photoimmunotherapy triggered anti-cancer immune responses to generate anti-cancer immune cells which accumulate in metastatic tumors. Our study results illustrate that intravital optical imaging is an efficient and versatile tool to investigate immune responses and mechanisms of photoimmunotherapy in future studies.


Assuntos
Ouro , Neoplasias da Bexiga Urinária , Animais , Rastreamento de Células , Imunoterapia/métodos , Camundongos , Imagem Óptica , Fototerapia/métodos
3.
Nanophotonics ; 10(12): 3295-3302, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36405500

RESUMO

Cancer is the second leading cause of death and there is an urgent need to improve cancer management. We have developed an innovative cancer therapy named Synergistic Immuno Photothermal Nanotherapy (SYMPHONY) by combining gold nanostars (GNS)-mediated photothermal ablation with checkpoint inhibitor immunotherapy. Our previous studies have demonstrated that SYMPHONY photoimmunotherapy not only treats the primary tumor but also dramatically amplifies anticancer immune responses in synergy with checkpoint blockade immunotherapy to treat remote and unresectable cancer metastasis. The SYMPHONY treatment also induces a 'cancer vaccine' effect leading to immunologic memory and prevents cancer recurrence in murine animal models. This manuscript provides an overview of our research activities on the SYMPHONY therapy with plasmonic GNS for cancer treatment.

4.
Int J Hyperthermia ; 37(1): 854-860, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32664768

RESUMO

BACKGROUND: Hyperthermia (heating to 43 °C) activates the innate immune system and improves bladder cancer chemosensitivity. OBJECTIVE: To evaluate the tissue penetration and safety of convective hyperthermia combined with intravesical mitomycin C (MMC) pharmacokinetics in live porcine bladder models using the Combat bladder recirculation system (BRS). METHODS: Forty 60 kg-female swine were anesthetized and catheterized with a 3-way, 16 F catheter. The Combat device was used to heat the bladders to a target temperature of 43 °C with recirculating intravesical MMC at doses of 40, 80, and 120 mg. Dwell-heat time varied from 30-180 min. Rapid necropsy with immediate flash freezing of tissues, blood and urine occurred. MMC concentrations were measured by liquid chromatography tandem-mass spectrometry. RESULTS: The Combat BRS system was able to achieve target range temperature (42-44 °C) in 12 mins, and this temperature was maintained as long as the device was running. Two factors increased tissue penetration of MMC in the bladder: drug concentration, and the presence of heat. In the hyperthermia arm, MMC penetration saturated at 80 mg, suggesting that with heating, drug absorption may saturate and not require higher doses to achieve the maximal biological effect. Convective hyperthermia did not increase the MMC concentration in the liver, heart, kidney, spleen, lung, and lymph node tissue even at the 120 mg dose. CONCLUSIONS: Convective bladder hyperthermia using the Combat BRS device is safe and the temperature can be maintained at 43 °C. Hyperthermia therapy may increase MMC penetration into the bladder wall but does not result in an increase of MMC levels in other organs.


Assuntos
Hipertermia Induzida , Neoplasias da Bexiga Urinária , Administração Intravesical , Animais , Antibióticos Antineoplásicos/uso terapêutico , Feminino , Hipertermia , Mitomicina/uso terapêutico , Suínos , Neoplasias da Bexiga Urinária/tratamento farmacológico
5.
Immunotherapy ; 11(15): 1293-1302, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31530200

RESUMO

Brain tumors present unique therapeutic challenges and they include glioblastoma (GBM) and metastases from cancers of other organs. Current treatment options are limited and include surgical resection, radiation therapy, laser interstitial thermal therapy and chemotherapy. Although much research has been done on the development of immune-based treatment platforms, only limited success has been demonstrated. Herein, we demonstrate a novel treatment of GBM through the use of plasmonic gold nanostars (GNS) as photothermal inducers for synergistic immuno photothermal nanotherapy (SYMPHONY), which combines treatments using gold nanostar and laser-induced photothermal therapy with checkpoint blockade immunotherapy. In the treatment of a murine flank tumor model with the CT-2A glioma cell line, SYMPHONY demonstrated the capability of producing long-term survivors that rejects rechallenge with cancer cells, heralding the successful emergence of immunologic memory. This study is the first to investigate the use of this novel therapy for the treatment of GBM in a murine model.


Assuntos
Glioblastoma , Hipertermia Induzida/métodos , Imunoterapia/métodos , Nanopartículas Metálicas , Neoplasias Experimentais/terapia , Fototerapia/métodos , Animais , Neoplasias Encefálicas , Ouro , Memória Imunológica , Terapia a Laser/métodos , Camundongos , Camundongos Endogâmicos C57BL , Nanotecnologia/métodos
6.
Sci Rep ; 7(1): 8606, 2017 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-28819209

RESUMO

Metastatic spread is the mechanism in more than 90 percent of cancer deaths and current therapeutic options, such as systemic chemotherapy, are often ineffective. Here we provide a proof of principle for a novel two-pronged modality referred to as Synergistic Immuno Photothermal Nanotherapy (SYMPHONY) having the potential to safely eradicate both primary tumors and distant metastatic foci. Using a combination of immune-checkpoint inhibition and plasmonic gold nanostar (GNS)-mediated photothermal therapy, we were able to achieve complete eradication of primary treated tumors and distant untreated tumors in some mice implanted with the MB49 bladder cancer cells. Delayed rechallenge with MB49 cancer cells injection in mice that appeared cured by SYMPHONY did not lead to new tumor formation after 60 days observation, indicating that SYMPHONY treatment induced effective long-lasting immunity against MB49 cancer cells.


Assuntos
Hipertermia Induzida , Fototerapia , Nanomedicina Teranóstica , Neoplasias da Bexiga Urinária/imunologia , Neoplasias da Bexiga Urinária/terapia , Animais , Imunofenotipagem , Estimativa de Kaplan-Meier , Camundongos , Metástase Neoplásica
7.
Int J Hyperthermia ; 32(4): 417-33, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27132465

RESUMO

The urinary bladder is a fluid-filled organ. This makes, on the one hand, the internal surface of the bladder wall relatively easy to heat and ensures in most cases a relatively homogeneous temperature distribution; on the other hand the variable volume, organ motion, and moving fluid cause artefacts for most non-invasive thermometry methods, and require additional efforts in planning accurate thermal treatment of bladder cancer. We give an overview of the thermometry methods currently used and investigated for hyperthermia treatments of bladder cancer, and discuss their advantages and disadvantages within the context of the specific disease (muscle-invasive or non-muscle-invasive bladder cancer) and the heating technique used. The role of treatment simulation to determine the thermal dose delivered is also discussed. Generally speaking, invasive measurement methods are more accurate than non-invasive methods, but provide more limited spatial information; therefore, a combination of both is desirable, preferably supplemented by simulations. Current efforts at research and clinical centres continue to improve non-invasive thermometry methods and the reliability of treatment planning and control software. Due to the challenges in measuring temperature across the non-stationary bladder wall and surrounding tissues, more research is needed to increase our knowledge about the penetration depth and typical heating pattern of the various hyperthermia devices, in order to further improve treatments. The ability to better determine the delivered thermal dose will enable clinicians to investigate the optimal treatment parameters, and consequentially, to give better controlled, thus even more reliable and effective, thermal treatments.


Assuntos
Hipertermia Induzida , Neoplasias da Bexiga Urinária/terapia , Animais , Humanos , Temperatura , Termometria
8.
Int J Hyperthermia ; 30(5): 285-94, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25144817

RESUMO

PURPOSE: Unresectable chest wall recurrences of breast cancer (CWR) in heavily pretreated patients are especially difficult to treat. We hypothesised that thermally enhanced drug delivery using low temperature liposomal doxorubicin (LTLD), given with mild local hyperthermia (MLHT), will be safe and effective in this population. PATIENTS AND METHODS: This paper combines the results of two similarly designed phase I trials. Eligible CWR patients had progressed on the chest wall after prior hormone therapy, chemotherapy, and radiotherapy. Patients were to get six cycles of LTLD every 21-35 days, followed immediately by chest wall MLHT for 1 hour at 40-42 °C. In the first trial 18 subjects received LTLD at 20, 30, or 40 mg/m2; in the second trial, 11 subjects received LTLD at 40 or 50 mg/m2. RESULTS: The median age of all 29 patients enrolled was 57 years. Thirteen patients (45%) had distant metastases on enrolment. Patients had received a median dose of 256 mg/m2 of prior anthracyclines and a median dose of 61 Gy of prior radiation. The median number of study treatments that subjects completed was four. The maximum tolerated dose was 50 mg/m2, with seven subjects (24%) developing reversible grade 3-4 neutropenia and four (14%) reversible grade 3-4 leucopenia. The rate of overall local response was 48% (14/29, 95% CI: 30-66%), with. five patients (17%) achieving complete local responses and nine patients (31%) having partial local responses. CONCLUSION: LTLD at 50 mg/m2 and MLHT is safe. This combined therapy produces objective responses in heavily pretreated CWR patients. Future work should test thermally enhanced LTLD delivery in a less advanced patient population.


Assuntos
Adenocarcinoma/terapia , Antibióticos Antineoplásicos , Neoplasias da Mama/terapia , Doxorrubicina/análogos & derivados , Hipertermia Induzida , Recidiva Local de Neoplasia/terapia , Adenocarcinoma/sangue , Adulto , Idoso , Antibióticos Antineoplásicos/efeitos adversos , Antibióticos Antineoplásicos/sangue , Antibióticos Antineoplásicos/farmacocinética , Antibióticos Antineoplásicos/uso terapêutico , Neoplasias da Mama/sangue , Terapia Combinada , Doxorrubicina/efeitos adversos , Doxorrubicina/sangue , Doxorrubicina/farmacocinética , Doxorrubicina/uso terapêutico , Feminino , Humanos , Dose Máxima Tolerável , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/sangue , Polietilenoglicóis/efeitos adversos , Polietilenoglicóis/farmacocinética , Polietilenoglicóis/uso terapêutico , Temperatura , Resultado do Tratamento
9.
IEEE Trans Biomed Eng ; 61(7): 2154-60, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24759979

RESUMO

We present the modeling efforts on antenna design and frequency selection to monitor brain temperature during prolonged surgery using noninvasive microwave radiometry. A tapered log-spiral antenna design is chosen for its wideband characteristics that allow higher power collection from deep brain. Parametric analysis with the software HFSS is used to optimize antenna performance for deep brain temperature sensing. Radiometric antenna efficiency (η) is evaluated in terms of the ratio of power collected from brain to total power received by the antenna. Anatomical information extracted from several adult computed tomography scans is used to establish design parameters for constructing an accurate layered 3-D tissue phantom. This head phantom includes separate brain and scalp regions, with tissue equivalent liquids circulating at independent temperatures on either side of an intact skull. The optimized frequency band is 1.1-1.6 GHz producing an average antenna efficiency of 50.3% from a two turn log-spiral antenna. The entire sensor package is contained in a lightweight and low-profile 2.8 cm diameter by 1.5 cm high assembly that can be held in place over the skin with an electromagnetic interference shielding adhesive patch. The calculated radiometric equivalent brain temperature tracks within 0.4 °C of the measured brain phantom temperature when the brain phantom is lowered 10 °C and then returned to the original temperature (37 °C) over a 4.6-h experiment. The numerical and experimental results demonstrate that the optimized 2.5-cm log-spiral antenna is well suited for the noninvasive radiometric sensing of deep brain temperature.


Assuntos
Temperatura Corporal/fisiologia , Encéfalo/fisiologia , Micro-Ondas , Monitorização Fisiológica/instrumentação , Radiometria/instrumentação , Termometria/instrumentação , Simulação por Computador , Cabeça/fisiologia , Humanos , Modelos Biológicos , Monitorização Fisiológica/métodos , Imagens de Fantasmas , Termometria/métodos
10.
Int J Hyperthermia ; 30(3): 176-83, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24669804

RESUMO

PURPOSE: The aim of this paper is to report thermal dosimetry characteristics of external deep regional pelvic hyperthermia combined with intravesical mitomycin C (MMC) for treating bladder cancer following transurethral resection of bladder tumour, and to use thermal data to evaluate reliability of delivering the prescribed hyperthermia dose to bladder tissue. MATERIALS AND METHODS: A total of 14 patients were treated with MMC and deep regional hyperthermia (BSD-2000, Sigma Ellipse or Sigma 60). The hyperthermia objective was 42° ± 2 °C to bladder tissue for ≥40 min per treatment. Temperatures were monitored with thermistor probes and recorded values were used to calculate thermal dose and evaluate treatment. Anatomical characteristics were examined for possible correlations with heating. RESULTS: Combined with BSD-2000 standard treatment planning and patient feedback, real-time temperature monitoring allowed thermal steering of heat sufficient to attain the prescribed thermal dose to bladder tissue within patient tolerance in 91.6% of treatments. Mean treatment time for bladder tissue >40 °C was 61.9 ± 11.4 min and mean thermal dose was 21.3 ± 16.5 CEM43. Average thermal doses obtained in normal tissues were 1.6 ± 1.2 CEM43 for the rectum and 0.8 ± 1.3 CEM43 in superficial normal tissues. No significant correlation was seen between patient anatomical characteristics and thermal dose achieved in bladder tissue. CONCLUSIONS: This study demonstrates that a hyperthermia prescription of 42° ± 2 °C for 40-60 min can be delivered safely to bladder tissue with external radiofrequency phased array applicators for a typical range of patient sizes. Using the available thermometry and treatment planning, the BSD-2000 hyperthermia system was shown to be an effective method of focusing heat regionally around the bladder with good patient tolerance.


Assuntos
Hipertermia Induzida , Neoplasias da Bexiga Urinária/terapia , Humanos , Invasividade Neoplásica , Satisfação do Paciente , Tomografia Computadorizada por Raios X , Neoplasias da Bexiga Urinária/diagnóstico por imagem
11.
Neuroradiol J ; 27(1): 3-12, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24571829

RESUMO

This study characterizes the sensitivity and accuracy of a non-invasive microwave radiometric thermometer intended for monitoring body core temperature directly in brain to assist rapid recovery from hypothermia such as occurs during surgical procedures. To study this approach, a human head model was constructed with separate brain and scalp regions consisting of tissue equivalent liquids circulating at independent temperatures on either side of intact skull. This test setup provided differential surface/deep tissue temperatures for quantifying sensitivity to change in brain temperature independent of scalp and surrounding environment. A single band radiometer was calibrated and tested in a multilayer model of the human head with differential scalp and brain temperature. Following calibration of a 500MHz bandwidth microwave radiometer in the head model, feasibility of clinical monitoring was assessed in a pediatric patient during a 2-hour surgery. The results of phantom testing showed that calculated radiometric equivalent brain temperature agreed within 0.4°C of measured temperature when the brain phantom was lowered 10°C and returned to original temperature (37°C), while scalp was maintained constant over a 4.6-hour experiment. The intended clinical use of this system was demonstrated by monitoring brain temperature during surgery of a pediatric patient. Over the 2-hour surgery, the radiometrically measured brain temperature tracked within 1-2°C of rectal and nasopharynx temperatures, except during rapid cooldown and heatup periods when brain temperature deviated 2-4°C from slower responding core temperature surrogates. In summary, the radiometer demonstrated long term stability, accuracy and sensitivity sufficient for clinical monitoring of deep brain temperature during surgery.


Assuntos
Temperatura Corporal/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Micro-Ondas , Modelos Anatômicos , Imagens de Fantasmas , Temperatura Alta , Humanos , Radiografia , Radiometria , Telemetria
12.
Int J Hyperthermia ; 30(3): 171-5, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24490762

RESUMO

PURPOSE: This paper aims to evaluate the safety and heating efficiency of external deep pelvic hyperthermia combined with intravesical mitomycin C (MMC) as a novel therapy for non-muscle-invasive bladder cancer (NMIBC). MATERIALS AND METHODS: We enrolled subjects with bacillus Calmette-Guérin (BCG) refractory NMIBC to an early phase clinical trial of external deep pelvic hyperthermia (using a BSD-2000 device) combined with MMC. Bladders were heated to 42 °C for 1 h during intravesical MMC treatment. Treatments were given weekly for 6 weeks, then monthly for 4 months. Heating parameters, treatment toxicity, and clinical outcomes were systematically measured. RESULTS: Fifteen patients were enrolled on the clinical trial. Median age was 66 years and 87% were male. Median European Organisation for Research and Treatment of Cancer (EORTC) recurrence and progression scores were 6 and 8, respectively. The full treatment course was attained in 73% of subjects. Effective bladder heating was possible in all but one patient who could not tolerate the supine position due to lung disease. Adverse events were all minor (grade 2 or less) and no systemic toxicity was observed. The most common adverse effects were Foley catheter pain (40%), abdominal discomfort (33%), chemical cystitis symptoms (27%), and abdominal skin swelling (27%). With a median follow-up of 3.18 years, 67% experienced another bladder cancer recurrence (none were muscle invasive) and 13% experienced an upper tract recurrence. CONCLUSIONS: External deep pelvic hyperthermia using the BSD-2000 device is a safe and reproducible method of heating the bladder in patients undergoing intravesical MMC. The efficacy of this treatment modality should be explored further in clinical trials.


Assuntos
Hipertermia Induzida , Mitomicina/uso terapêutico , Pelve , Neoplasias da Bexiga Urinária/tratamento farmacológico , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mitomicina/administração & dosagem , Invasividade Neoplásica , Projetos Piloto , Neoplasias da Bexiga Urinária/patologia
13.
Proc SPIE Int Soc Opt Eng ; 85842013 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-24244830

RESUMO

BACKGROUND: There are numerous clinical applications for non-invasive monitoring of deep tissue temperature. We present the design and experimental performance of a miniature radiometric thermometry system for measuring volume average temperature of tissue regions located up to 5cm deep in the body. METHODS: We constructed a miniature sensor consisting of EMI-shielded log spiral microstrip antenna with high gain on-axis and integrated high-sensitivity 1.35GHz total power radiometer with 500 MHz bandwidth. We tested performance of the radiometry system in both simulated and experimental multilayer phantom models of several intended clinical measurement sites: i) brown adipose tissue (BAT) depots within 2cm of the skin surface, ii) 3-5cm deep kidney, and iii) human brain underlying intact scalp and skull. The physical models included layers of circulating tissue-mimicking liquids controlled at different temperatures to characterize our ability to quantify small changes in target temperature at depth under normothermic surface tissues. RESULTS: We report SAR patterns that characterize the sense region of a 2.6cm diameter receive antenna, and radiometric power measurements as a function of deep tissue temperature that quantify radiometer sensitivity. The data demonstrate: i) our ability to accurately track temperature rise in realistic tissue targets such as urine refluxed from prewarmed bladder into kidney, and 10°C drop in brain temperature underlying normothermic scalp and skull, and ii) long term accuracy and stability of ∓0.4°C over 4.5 hours as needed for monitoring core body temperature over extended surgery or monitoring effects of brown fat metabolism over an extended sleep/wake cycle. CONCLUSIONS: A non-invasive sensor consisting of 2.6cm diameter receive antenna and integral 1.35GHz total power radiometer has demonstrated sufficient sensitivity to track clinically significant changes in temperature of deep tissue targets underlying normothermic surface tissues for clinical applications like the detection of vesicoureteral reflux, and long term monitoring of brown fat metabolism or brain core temperature during extended surgery.

14.
Proc SPIE Int Soc Opt Eng ; 85842013 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-24244831

RESUMO

BACKGROUND: Brown adipose tissue (BAT) plays an important role in whole body metabolism and could potentially mediate weight gain and insulin sensitivity. Although some imaging techniques allow BAT detection, there are currently no viable methods for continuous acquisition of BAT energy expenditure. We present a non-invasive technique for long term monitoring of BAT metabolism using microwave radiometry. METHODS: A multilayer 3D computational model was created in HFSS™ with 1.5 mm skin, 3-10 mm subcutaneous fat, 200 mm muscle and a BAT region (2-6 cm3) located between fat and muscle. Based on this model, a log-spiral antenna was designed and optimized to maximize reception of thermal emissions from the target (BAT). The power absorption patterns calculated in HFSS™ were combined with simulated thermal distributions computed in COMSOL® to predict radiometric signal measured from an ultra-low-noise microwave radiometer. The power received by the antenna was characterized as a function of different levels of BAT metabolism under cold and noradrenergic stimulation. RESULTS: The optimized frequency band was 1.5-2.2 GHz, with averaged antenna efficiency of 19%. The simulated power received by the radiometric antenna increased 2-9 mdBm (noradrenergic stimulus) and 4-15 mdBm (cold stimulus) corresponding to increased 15-fold BAT metabolism. CONCLUSIONS: Results demonstrated the ability to detect thermal radiation from small volumes (2-6 cm3) of BAT located up to 12 mm deep and to monitor small changes (0.5 °C) in BAT metabolism. As such, the developed miniature radiometric antenna sensor appears suitable for non-invasive long term monitoring of BAT metabolism.

15.
Int J Hyperthermia ; 29(8): 835-44, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24050253

RESUMO

PURPOSE: This paper describes a preclinical investigation of the feasibility of thermotherapy treatment of bladder cancer with magnetic fluid hyperthermia (MFH), performed by analysing the thermal dosimetry of nanoparticle heating in a rat bladder model. MATERIALS AND METHODS: The bladders of 25 female rats were instilled with magnetite-based nanoparticles, and hyperthermia was induced using a novel small animal magnetic field applicator (Actium Biosystems, Boulder, CO). We aimed to increase the bladder lumen temperature to 42 °C in <10 min and maintain that temperature for 60 min. Temperatures were measured within the bladder lumen and throughout the rat with seven fibre-optic probes (OpSens Technologies, Quebec, Canada). An MRI analysis was used to confirm the effectiveness of the catheterisation method to deliver and maintain various nanoparticle volumes within the bladder. Thermal dosimetry measurements recorded the temperature rise of rat tissues for a variety of nanoparticle exposure conditions. RESULTS: Thermal dosimetry data demonstrated our ability to raise and control the temperature of rat bladder lumen ≥1 °C/min to a steady state of 42 °C with minimal heating of surrounding normal tissues. MRI scans confirmed the homogenous nanoparticle distribution throughout the bladder. CONCLUSION: These data demonstrate that our MFH system with magnetite-based nanoparticles provides well-localised heating of rat bladder lumen with effective control of temperature in the bladder and minimal heating of surrounding tissues.


Assuntos
Hipertermia Induzida/métodos , Nanopartículas de Magnetita/uso terapêutico , Neoplasias da Bexiga Urinária/terapia , Animais , Feminino , Fenômenos Magnéticos , Ratos , Ratos Endogâmicos F344
16.
Proc SPIE Int Soc Opt Eng ; 8584: 1656985, 2013 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-23837123

RESUMO

BACKGROUND: Despite positive efficacy, thermotherapy is not widely used in clinical oncology. Difficulties associated with field penetration and controlling power deposition patterns in heterogeneous tissue have limited its use for heating deep in the body. Heat generation using iron-oxide super-paramagnetic nanoparticles excited with magnetic fields has been demonstrated to overcome some of these limitations. The objective of this preclinical study is to investigate the feasibility of treating bladder cancer with magnetic fluid hyperthermia (MFH) by analyzing the thermal dosimetry of nanoparticle heating in a rat bladder model. METHODS: The bladders of 25 female rats were injected with 0.4 ml of Actium Biosystems magnetite-based nanoparticles (Actium Biosystems, Boulder CO) via catheters inserted in the urethra. To assess the distribution of nanoparticles in the rat after injection we used the 7 T small animal MRI system (Bruker ClinScan, Bruker BioSpin MRI GmbH, Ettlingen, Germany). Heat treatments were performed with a small animal magnetic field applicator (Actium Biosystems, Boulder CO) with a goal of raising bladder temperature to 42°C in <10min and maintaining for 60min. Temperatures were measured throughout the rat with seven fiberoptic temperature probes (OpSens Technologies, Quebec Canada) to characterize our ability to localize heat within the bladder target. RESULTS: The MRI study confirms the effectiveness of the catheterization procedure to homogenously distribute nanoparticles throughout the bladder. Thermal dosimetry data demonstrate our ability to controllably raise temperature of rat bladder ≥1°C/min to a steady-state of 42°C. CONCLUSION: Our data demonstrate that a MFH system provides well-localized heating of rat bladder with effective control of temperature in the bladder and minimal heating of surrounding tissues.

17.
Int J Hyperthermia ; 29(4): 346-57, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23672453

RESUMO

Abstract Clinical trials have shown that hyperthermia (HT), i.e. an increase of tissue temperature to 39-44 °C, significantly enhance radiotherapy and chemotherapy effectiveness [1]. Driven by the developments in computational techniques and computing power, personalised hyperthermia treatment planning (HTP) has matured and has become a powerful tool for optimising treatment quality. Electromagnetic, ultrasound, and thermal simulations using realistic clinical set-ups are now being performed to achieve patient-specific treatment optimisation. In addition, extensive studies aimed to properly implement novel HT tools and techniques, and to assess the quality of HT, are becoming more common. In this paper, we review the simulation tools and techniques developed for clinical hyperthermia, and evaluate their current status on the path from 'model' to 'clinic'. In addition, we illustrate the major techniques employed for validation and optimisation. HTP has become an essential tool for improvement, control, and assessment of HT treatment quality. As such, it plays a pivotal role in the quest to establish HT as an efficacious addition to multi-modality treatment of cancer.


Assuntos
Hipertermia Induzida , Modelos Biológicos , Simulação por Computador , Humanos , Neoplasias/terapia
18.
Int J Hyperthermia ; 29(3): 206-10, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23489163

RESUMO

PURPOSE: The aim of this study was to determine the kinematic viscosity of human urine and factors associated with its variability. This value is necessary for accurate modelling of fluid mechanics and heat transfer during hyperthermia treatments of bladder cancer. MATERIALS AND METHODS: Urine samples from 64 patients undergoing routine clinical testing were subject to dipstick urinalysis and measurement of viscosity with a Cannon-Fenske viscometer. Viscosity measurements were taken at relevant temperatures for hyperthermia studies: 20 °C (room temperature), 37 °C (body temperature), and 42 °C (clinical hyperthermia temperature). Factors that might affect viscosity were assessed, including glucosuria, haematuria, urinary tract infection status, ketonuria and proteinuria status. The correlation of urine specific gravity and viscosity was measured with Spearman's rho. RESULTS: Urine kinematic viscosity at 20 °C was 1.0700 cSt (standard deviation (SD) = 0.1076), at 37 °C 0.8293 cSt (SD = 0.0851), and at 42 °C 0.6928 cSt (SD = 0.0247). Proteinuria appeared to increase urine viscosity, whereas age, gender, urinary tract infection, glucosuria, ketonuria, and haematuria did not affect it. Urine specific gravity was only modestly correlated with urine viscosity at 20 °C (rho = 0.259), 37 °C (rho = 0.266), and 42 °C (rho = 0.255). CONCLUSIONS: The kinematic viscosity of human urine is temperature dependent and higher than water. Urine specific gravity was not a good predictor of viscosity. Of factors that might affect urine viscosity, only proteinuria appeared to be clinically relevant. Estimates of urine viscosity provided in this manuscript may be useful for temperature modelling of bladder hyperthermia treatments with regard to correct prediction of the thermal conduction effects.


Assuntos
Hipertermia Induzida , Urina/química , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteinúria , Temperatura , Urinálise , Neoplasias da Bexiga Urinária/terapia , Viscosidade
19.
J Appl Clin Med Phys ; 13(5): 3845, 2012 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-22955650

RESUMO

A thermobrachytherapy surface applicator (TBSA) was developed for simultaneous heat and brachytherapy treatment of chest wall (CW) recurrence of breast cancer. The ability to comfortably secure the applicator over the upper torso relative to the CW target throughout treatment is assessed on volunteers. Male and postmastectomy female volunteers were enrolled to evaluate applicator secure fit to CW. Female subjects with intact breast were also enrolled to assess the ability to treat challenging cases. Magnetic resonance (MR) images of volunteers wearing a TBSA over the upper torso were acquired once every 15 minutes for 90 minutes. Applicator displacement over this time period required for treatment preplanning and delivery was assessed using MR visible markers. Applicator comfort and tolerability were assessed using a questionnaire. Probability estimates of applicator displacements were used to investigate dosimetric impact for the worst-case variation in radiation source-to-skin distance for 5 and 10 mm deep targets spread 17 × 13 cm on a torso phantom. Average and median displacements along lateral and radial directions were less than 1.2 mm over 90 minutes for all volunteers. Maximum lateral and radial displacements were measured to be less than 1 and 1.5 mm, respectively, for all CW volunteers and less than 2 mm for intact breast volunteers, excluding outliers. No complaint of pain or discomfort was reported. Phantom treatment planning for the maximum displacement of 2 mm indicated < 10% increase in skin dose with < 5% loss of homogeneity index (HI) for -2 mm uniform HDR source displacement. For +2 mm uniform displacement, skin dose decreased and HI increased by 20%. The volunteer study demonstrated that such large and uniform displacements should be rare for CW subjects, and the measured variation is expected to be low for multifraction conformal brachytherapy treatment.


Assuntos
Braquiterapia/instrumentação , Neoplasias da Mama/terapia , Hipertermia Induzida , Recidiva Local de Neoplasia/terapia , Posicionamento do Paciente , Algoritmos , Braquiterapia/métodos , Relação Dose-Resposta à Radiação , Feminino , Temperatura Alta , Humanos , Masculino , Imagens de Fantasmas , Dosagem Radioterapêutica , Pele/efeitos da radiação , Parede Torácica/efeitos da radiação
20.
Int J Hyperthermia ; 28(5): 431-40, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22804741

RESUMO

PURPOSE: It is unknown whether a thermal dose should be administered using a few large fractions with higher temperatures or a larger number of fractions with lower temperatures. To evaluate this we assessed the effect of administering the same total thermal dose, approximately 30 CEM43T(90), in one versus three to four fractions per week, over 5 weeks. MATERIALS AND METHODS: Canine sarcomas were randomised to receive one of the hyperthermia fractionation schemes along with fractionated radiotherapy. Tumour response was based on changes in tumour volume, oxygenation, water diffusion quantified using MRI, and a panel of histological and immunohistochemical end points. RESULTS: There was a greater reduction in tumour volume and water diffusion at the end of therapy in tumours receiving one hyperthermia fraction per week. There was a weak but significant association between improved tumour oxygenation 24 h after the first hyperthermia treatment and extent of volume reduction at the end of therapy. Finally, the direction of change of HIF-1α and CA-IX immunoreactivity after the first hyperthermia fraction was similar and there was an inverse relationship between temperature and the direction of change of CA-IX. There were no significant changes in interstitial fluid pressure, VEGF, vWF, apoptosis or necrosis as a function of treatment group or temperature. CONCLUSIONS: We did not identify an advantage to a three to four per week hyperthermia prescription, and response data pointed to a one per week prescription being superior.


Assuntos
Hipertermia Induzida , Sarcoma/terapia , Neoplasias de Tecidos Moles/terapia , Animais , Antígenos de Neoplasias/metabolismo , Anidrases Carbônicas/metabolismo , Caspase 3/metabolismo , Cães , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Sarcoma/metabolismo , Sarcoma/patologia , Neoplasias de Tecidos Moles/metabolismo , Neoplasias de Tecidos Moles/patologia , Carga Tumoral , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...