Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 14(5)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38785991

RESUMO

Posiphen is a small molecule that exhibits neuroprotective properties by targeting multiple neurotoxic proteins involved in axonal transport, synaptic transmission, neuroinflammation, and cell death. Its broad-spectrum effects make it a promising candidate for treating neurodegenerative conditions, including Alzheimer's and Parkinson's diseases. Despite extensive investigation with animal models and human subjects, a comprehensive comparative analysis of Posiphen's pharmacokinetics across studies remains elusive. Here, we address this gap by examining the metabolic profiles of Posiphen and its breakdown into two primary metabolites-N1 and N8-across species by measuring their concentrations in plasma, brain, and CSF using the LC-MS/MS method. While all three compounds effectively inhibit neurotoxic proteins, the N1 metabolite is associated with adverse effects. Our findings reveal the species-specific behavior of Posiphen, with both Posiphen and N8 being predominant in various species, while N1 remains a minor constituent, supporting the drug's safety. Moreover, in plasma, Posiphen consistently showed fast clearance of all metabolites within 8 h in animal models and in human subjects, whereas in CSF or brain, the compound has an extended half-life of over 12 h. Combining all our human data and analyzing them by population pharmacokinetics showed that there are no differences between healthy volunteers, Alzheimer's, and Parkinson's patients. It also showed that Posiphen is absorbed and metabolized in a similar fashion across all animal species and human groups tested. These observations have critical implications for understanding the drug's safety, therapeutic effect, and clinical translation.


Assuntos
Especificidade da Espécie , Humanos , Animais , Ratos , Cães , Camundongos , Masculino , Espectrometria de Massas em Tandem , Encéfalo/metabolismo , Ratos Sprague-Dawley , Fármacos Neuroprotetores/farmacocinética , Feminino
2.
Pharmaceutics ; 13(12)2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34959389

RESUMO

Posiphen tartrate (Posiphen) is an orally available small molecule that targets a conserved regulatory element in the mRNAs of amyloid precursor protein (APP) and α-synuclein (αSYN) and inhibits their translation. APP and αSYN can cause neurodegeneration when their aggregates induce neurotoxicity. Therefore, Posiphen is a promising drug candidate for neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. Posiphen's safety has been demonstrated in three independent phase I clinical trials. Moreover, in a proof of concept study, Posiphen lowered neurotoxic proteins and inflammatory markers in cerebrospinal fluid of mild cognitive impaired patients. Herein we investigated whether Posiphen reduced the expression of other proteins, as assessed by stable isotope labeling with amino acids in cell culture (SILAC) followed by mass spectrometry (MS)-based proteomics. Neuroblastoma SH-SY5Y cells, an in vitro model of neuronal function, were used for the SILAC protein profiling response. Proteins whose expression was altered by Posiphen treatment were characterized for biological functions, pathways and networks analysis. The most significantly affected pathway was the Huntington's disease signaling pathway, which, along with huntingtin (HTT) protein, was down-regulated by Posiphen in the SH-SY5Y cells. The downregulation of HTT protein by Posiphen was confirmed by quantitative Western blotting and immunofluorescence. Unchanged mRNA levels of HTT and a comparable decay rate of HTT proteins after Posiphen treatment supported the coclusion that Posiphen reduced HTT via downregulation of the translation of HTT mRNA. Meanwhile, the downregulation of APP and αSYN proteins by Posiphen was also confirmed. The mRNAs encoding HTT, APP and αSYN contain an atypical iron response element (IRE) in their 5'-untranslated regions (5'-UTRs) that bind iron regulatory protein 1 (IRP1), and Posiphen specifically bound this complex. Conversely, Posiphen did not bind the IRP1/IRE complex of mRNAs with canonical IREs, and the translation of these mRNAs was not affected by Posiphen. Taken together, Posiphen shows high affinity binding to the IRE/IRP1 complex of mRNAs with an atypical IRE stem loop, inducing their translation suppression, including the mRNAs of neurotoxic proteins APP, αSYN and HTT.

3.
Am J Neurodegener Dis ; 8(1): 1-15, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30906671

RESUMO

Parkinson disease (PD) is a neurodegenerative disease with motor as well as non-motor symptoms, including gastrointestinal dysfunction. In humans, these precede the motor symptoms by decades. Previously developed and characterized transgenic mice expressing the mutant human α-synuclein gene (SNCA) (either A53T or A30P), but not the endogenous mouse Snca, serve as models for familial PD. These animals demonstrate both robust abnormalities in enteric nervous system (ENS) function as well as synuclein-immunoreactive aggregates in ENS ganglia by 3 months of age, recapitulating early gastrointestinal abnormalities seen before the gait impairment characteristics of human and murine PD. Posiphen is a translational inhibitor of α-synuclein that targets the 5' untranslated region (UTR) of SNCA mRNA and could be a potential drug for the treatment of PD. However, its efficacy in ameliorating symptoms of PD has not yet been evaluated. Here, we used these transgenic mouse models to investigate the efficacy of Posiphen in reversing the gastrointestinal dysfunction. We show that Posiphen normalizes the colonic motility of both transgenic mouse models, although it did not affect the Whole Gut Transit Time (WGTT). Pharmacokinetics studies revealed that Posiphen is more abundant in the brain than in blood, in agreement with its lipophilicity, and the main metabolite is N8-NorPosiphen, a molecule with similar properties as Posiphen. The brain Posiphen levels necessary to effect optimal function were calculated and compared with efficacious brain levels from previous studies, showing that a 2-3 mM concentration of Posiphen and metabolites is sufficient for functional efficacy. Finally, 10 mg/kg Posiphen reduced α-synuclein levels in the gut of hSNCAA53T mice treated for twenty-one weeks, while 50 and 65 mg/kg Posiphen reduced α-synuclein levels in the brain of hSNCAA53T mice treated for twenty-one days. In conclusion, this is the first study showing the preclinical efficacy of Posiphen in normalizing the colonic motility in mouse models of gastrointestinal dysfunction in early PD. This result is in agreement with the ability of Posiphen to reach the nervous system, and its mechanism of action, the translational inhibition of α-synuclein expression. These significant findings support further development of Posiphen as a drug for the treatment of PD.

4.
Alzheimers Dement (N Y) ; 4: 37-45, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29955650

RESUMO

INTRODUCTION: Translational inhibition of amyloid precursor protein (APP) by Posiphen has been shown to reduce APP and its fragments in cell culture, animal models, and mildly cognitively impaired patients, making it a promising drug candidate for the treatment of Alzheimer's disease. METHODS: We used a mouse model of Alzheimer's disease (APP/presenilin-1) to examine Posiphen's efficacy, pharmacodynamics, and pharmacokinetics. RESULTS: Posiphen treatment normalized impairments in spatial working memory, contextual fear learning, and synaptic function in APP/presenilin-1 mice, without affecting their visual acuity, motor skills, or motivation and without affecting wild-type mice. Posiphen had a prolonged effect in reducing APP and all related peptides for at least 9 hours after the last dose. Its concentration was higher in the brain than in plasma, and the most abundant metabolite was N8-norPosiphen. DISCUSSION: This is the first study demonstrating the therapeutic efficacy of inhibiting the translation of APP and its fragments in an Alzheimer's disease model.

5.
J Neurol Neurosurg Psychiatry ; 83(9): 894-902, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22791904

RESUMO

AIM: A first in human study to evaluate tolerability and pharmacokinetics followed by an early proof of mechanism (POM) study to determine whether the small orally, available molecule, Posiphen tartrate (Posiphen), lowers secreted (s) amyloid-ß precursor protein (APP) α and -ß, amyloid-ß peptide (Aß), tau (τ) and inflammatory markers in CSF of patients with mild cognitive impairment (MCI). STUDY DESIGN: Posiphen single and multiple ascending dose phase 1 randomised, double blind, placebo-controlled safety, tolerance, pharmacokinetic studies were undertaken in a total of 120 healthy volunteers to define a dose that was then used in a small non-randomised study of five MCI subjects, used as their own controls, to define target engagement. MAIN OUTCOME MEASURES: Pharmacodynamic: sAPPα, sAPPß, Aß(42), τ (total (t) and phosphorylated (p)) and inflammatory marker levels were time-dependently measured over 12 h and compared prior to and following 10 days of oral Posiphen treatment in four MCI subjects who completed the study. Pharmacokinetic: plasma and CSF drug and primary metabolite concentrations with estimated brain levels extrapolated from steady-state drug administration in rats. RESULTS: Posiphen proved well tolerated and significantly lowered CSF levels of sAPPα, sAPPß, t-τ, p-τ and specific inflammatory markers, and demonstrated a trend to lower CSF Aß(42). CONCLUSIONS: These results confirm preclinical POM studies, demonstrate that pharmacologically relevant drug/metabolite levels reach brain and support the continued clinical optimisation and evaluation of Posiphen for MCI and Alzheimer's disease.


Assuntos
Peptídeos beta-Amiloides/líquido cefalorraquidiano , Precursor de Proteína beta-Amiloide/líquido cefalorraquidiano , Disfunção Cognitiva/tratamento farmacológico , Fragmentos de Peptídeos/líquido cefalorraquidiano , Fisostigmina/análogos & derivados , Proteínas tau/líquido cefalorraquidiano , Animais , Disfunção Cognitiva/sangue , Disfunção Cognitiva/líquido cefalorraquidiano , Relação Dose-Resposta a Droga , Método Duplo-Cego , Feminino , Humanos , Mediadores da Inflamação/líquido cefalorraquidiano , Masculino , Fisostigmina/efeitos adversos , Fisostigmina/farmacocinética , Fisostigmina/farmacologia , Ratos , Ratos Endogâmicos F344
6.
J Neural Transm (Vienna) ; 118(3): 493-507, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21221670

RESUMO

Increased brain α-synuclein (SNCA) protein expression resulting from gene duplication and triplication can cause a familial form of Parkinson's disease (PD). Dopaminergic neurons exhibit elevated iron levels that can accelerate toxic SNCA fibril formation. Examinations of human post mortem brain have shown that while mRNA levels for SNCA in PD have been shown to be either unchanged or decreased with respect to healthy controls, higher levels of insoluble protein occurs during PD progression. We show evidence that SNCA can be regulated via the 5'untranslated region (5'UTR) of its transcript, which we modeled to fold into a unique RNA stem loop with a CAGUGN apical loop similar to that encoded in the canonical iron-responsive element (IRE) of L- and H-ferritin mRNAs. The SNCA IRE-like stem loop spans the two exons that encode its 5'UTR, whereas, by contrast, the H-ferritin 5'UTR is encoded by a single first exon. We screened a library of 720 natural products (NPs) for their capacity to inhibit SNCA 5'UTR driven luciferase expression. This screen identified several classes of NPs, including the plant cardiac glycosides, mycophenolic acid (an immunosuppressant and Fe chelator), and, additionally, posiphen was identified to repress SNCA 5'UTR conferred translation. Western blotting confirmed that Posiphen and the cardiac glycoside, strophanthidine, selectively blocked SNCA expression (~1 µM IC(50)) in neural cells. For Posiphen this inhibition was accelerated in the presence of iron, thus providing a known APP-directed lead with potential for use as a SNCA blocker for PD therapy. These are candidate drugs with the potential to limit toxic SNCA expression in the brains of PD patients and animal models in vivo.


Assuntos
Antibacterianos/farmacologia , Encéfalo/metabolismo , Cardenolídeos/farmacologia , Dicloxacilina/farmacologia , Ferro/metabolismo , Emaranhados Neurofibrilares/metabolismo , Estrofantidina/farmacologia , alfa-Sinucleína/metabolismo , Regiões 5' não Traduzidas/genética , Western Blotting , Encéfalo/patologia , Linhagem Celular Tumoral , Células Cultivadas , Humanos , Emaranhados Neurofibrilares/efeitos dos fármacos , Emaranhados Neurofibrilares/genética , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Biossíntese de Proteínas/efeitos dos fármacos , Biossíntese de Proteínas/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , alfa-Sinucleína/genética
7.
Brain Res ; 973(2): 252-64, 2003 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-12738069

RESUMO

Excitatory amino acids acting at non-NMDA receptors contribute to transmission of nociceptive information. SYM 2081 ((2S,4R)-4-methyl glutamic acid) desensitizes kainate receptors, one subtype of non-NMDA receptors, to subsequent release of excitatory amino acids and thus may attenuate transmission of nociceptive information. To determine if SYM 2081 can prevent development of hyperalgesia, SYM 2081 (10, 50 or 100 mg/kg, i.p.) was administered prior to injection of capsaicin into the hindpaw of rats, which produces mechanical and heat hyperalgesia. To determine if SYM 2081 can reduce ongoing inflammatory hyperalgesia, SYM 2081 (10 or 100 mg/kg, i.p.) was administered after development of carrageenan-evoked hyperalgesia. Intraplantar injection of capsaicin produced an increase in hindpaw withdrawal frequency to mechanical stimuli (from 4+/-2 to 41+/-7%; mean+/-S.E.M.) and a decrease in withdrawal latency to heat (from 12.3+/-0.3 to 5.9+/-0.4 s) in rats that received vehicle. In contrast, rats that received SYM 2081 (100 mg/kg) prior to injection of capsaicin exhibited a lower hindpaw withdrawal frequency (18+/-4%) and a longer withdrawal latency (7.7+/-0.5 s). Intrathecal (1-100 microg/5 microl), but not intraplantar (10 or 100 microg/50 microl), injection of SYM 2081 attenuated the development of capsaicin-evoked heat hyperalgesia suggesting that SYM 2081's antihyperalgesic effects were due to its central effects. Furthermore, SYM 2081 completely reversed ongoing carrageenan-evoked mechanical hyperalgesia and partially (approximately 50%) reversed ongoing heat hyperalgesia. The present study demonstrates that administration of a high-potency ligand that selectively desensitizes kainate receptors attenuates the development of mechanical and heat hyperalgesia and attenuates ongoing inflammatory hyperalgesia.


Assuntos
Glutamatos/uso terapêutico , Hiperalgesia/tratamento farmacológico , Receptores de Ácido Caínico/agonistas , Animais , Capsaicina , Carragenina/efeitos adversos , Relação Dose-Resposta a Droga , Vias de Administração de Medicamentos/veterinária , Hiperalgesia/induzido quimicamente , Inflamação/induzido quimicamente , Inflamação/terapia , Extremidade Inferior/inervação , Extremidade Inferior/fisiopatologia , Masculino , Medição da Dor/métodos , Ratos , Ratos Sprague-Dawley , Tempo de Reação/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...