Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Neurosci ; 11: 423, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29358905

RESUMO

Understanding the mechanisms guiding interneuron development is a central aspect of the current research on cortical/hippocampal interneurons, which is highly relevant to brain function and pathology. In this methodological study we have addressed the setup of protocols for the reproducible culture of dissociated cells from murine medial ganglionic eminences (MGEs), to provide a culture system for the analysis of interneurons in vitro. This study includes the detailed protocols for the preparation of the dissociated cells, and for their culture on optimal substrates for cell migration or differentiation. These cultures enriched in interneurons may allow the investigation of the migratory behavior of interneuron precursors and their differentiation in vitro, up to the formation of morphologically identifiable GABAergic synapses. Live imaging of MGE-derived cells plated on proper substrates shows that they are useful to study the migratory behavior of the precursors, as well as the behavior of growth cones during the development of neurites. Most MGE-derived precursors develop into polarized GABAergic interneurons as determined by axonal, dendritic, and GABAergic markers. We present also a comparison of cells from WT and mutant mice as a proof of principle for the use of these cultures for the analysis of the migration and differentiation of GABAergic cells with different genetic backgrounds. The culture enriched in interneurons described here represents a useful experimental system to examine in a relatively easy and fast way the morpho-functional properties of these cells under physiological or pathological conditions, providing a powerful tool to complement the studies in vivo.

2.
Front Cell Neurosci ; 10: 289, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28066185

RESUMO

Interneurons are essential modulators of brain activity and their abnormal maturation may lead to neural and intellectual disabilities. Here we show that cultures derived from murine medial ganglionic eminences (MGEs) produce virtually pure, polarized γ-aminobutyric acid (GABA)-ergic interneurons that can form morphologically identifiable inhibitory synapses. We show that Rac GTPases and a protein complex including the GIT family scaffold proteins are expressed during maturation in vitro, and are required for the normal development of neurites. GIT1 promotes neurite extension in a conformation-dependent manner, while affecting its interaction with specific partners reduces neurite branching. Proteins of the GIT network are concentrated at growth cones, and interaction mutants may affect growth cone behavior. Our findings identify the PIX/GIT1/liprin-α1/ERC1 network as critical for the regulation of interneuron neurite differentiation in vitro, and show that these cultures represent a valuable system to identify the molecular mechanisms driving the maturation of cortical/hippocampal interneurons.

3.
Ann Neurol ; 75(1): 127-37, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24242821

RESUMO

OBJECTIVE: To facilitate development of novel disease-modifying therapies for lysosomal storage disorder (LSDs) characterized by nervous system involvement such as metachromatic leukodystrophy (MLD), molecular markers for monitoring disease progression and therapeutic response are needed. To this end, we sought to identify blood transcripts associated with the progression of MLD. METHODS: Genome-wide expression analysis was performed in primary T lymphocytes of 24 patients with MLD compared to 24 age- and sex-matched healthy controls. Genes associated with MLD were identified, confirmed on a quantitative polymerase chain reaction platform, and replicated in an independent patient cohort. mRNA and protein expression of the prioritized gene family of metallothioneins was evaluated in postmortem patient brains and in mouse models representing 6 other LSDs. Metallothionein expression during disease progression and in response to specific treatment was evaluated in 1 of the tested LSD mouse models. Finally, a set of in vitro studies was planned to dissect the biological functions exerted by this class of molecules. RESULTS: Metallothionein genes were significantly overexpressed in T lymphocytes and brain of patients with MLD and generally marked nervous tissue damage in the LSDs here evaluated. Overexpression of metallothioneins correlated with measures of disease progression in mice and patients, whereas their levels decreased in mice upon therapeutic treatment. In vitro studies indicated that metallothionein expression is regulated in response to oxidative stress and inflammation, which are biochemical hallmarks of lysosomal storage diseases. INTERPRETATION: Metallothioneins are potential markers of neurologic disease processes and treatment response in LSDs.


Assuntos
Leucócitos Mononucleares/metabolismo , Leucodistrofia Metacromática/metabolismo , Doenças por Armazenamento dos Lisossomos/metabolismo , Metalotioneína/química , Simulação de Dinâmica Molecular , Animais , Biomarcadores/metabolismo , Técnicas de Cocultura , Modelos Animais de Doenças , Humanos , Leucodistrofia Metacromática/diagnóstico , Doenças por Armazenamento dos Lisossomos/diagnóstico , Doenças por Armazenamento dos Lisossomos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Cultura Primária de Células
4.
J Neuroinflammation ; 10: 130, 2013 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-24160637

RESUMO

BACKGROUND: Astrocytes respond to local insults within the brain and the spinal cord with important changes in their phenotype. This process, overall known as "activation", is observed upon proinflammatory stimulation and leads astrocytes to acquire either a detrimental phenotype, thereby contributing to the neurodegenerative process, or a protective phenotype, thus supporting neuronal survival. Within the mechanisms responsible for inflammatory neurodegeneration, oxidative stress plays a major role and has recently been recognized to be heavily influenced by changes in cytosolic iron levels. In this work, we investigated how activation affects the competence of astrocytes to handle iron overload and the ensuing oxidative stress. METHODS: Cultures of pure cortical astrocytes were preincubated with proinflammatory cytokines (interleukin-1ß and tumor necrosis factor α) or conditioned medium from lipopolysaccharide-activated microglia to promote activation and then exposed to a protocol of iron overload. RESULTS: We demonstrate that activated astrocytes display an efficient protection against iron-mediated oxidative stress and cell death. Based on this evidence, we performed a comprehensive biochemical and molecular analysis, including a transcriptomic approach, to identify the molecular basis of this resistance. CONCLUSIONS: We propose the protective phenotype acquired after activation not to involve the most common astrocytic antioxidant pathway, based on the Nrf2 transcription factor, but to result from a complex change in the expression and activity of several genes involved in the control of cellular redox state.


Assuntos
Astrócitos/citologia , Astrócitos/metabolismo , Estresse Oxidativo/fisiologia , Animais , Western Blotting , Ferro/metabolismo , Fenótipo , RNA Interferente Pequeno , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção
5.
Eur J Neurosci ; 33(2): 236-43, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21073551

RESUMO

BACE1 and BACE2 are two closely related membrane-bound aspartic proteases. BACE1 is widely recognized as the neuronal ß-secretase that cleaves the amyloid-ß precursor protein, thus allowing the production of amyloid-ß, i.e. the peptide that has been proposed to trigger the neurodegenerative process in Alzheimer's disease. BACE2 has ubiquitous expression and its physiological and pathological role is still unclear. In light of a possible role of glial cells in the accumulation of amyloid-ß in brain, we have investigated the expression of these two enzymes in primary cultures of astrocytes. We show that astrocytes possess ß-secretase activity and produce amyloid-ß because of the activity of BACE2, but not BACE1, the expression of which is blocked at the translational level. Finally, our data demonstrate that changes in the astrocytic phenotype during neuroinflammation can produce both a negative as well as a positive modulation of ß-secretase activity, also depending on the differential responsivity of the brain regions.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Astrócitos/enzimologia , Regulação da Expressão Gênica , Biossíntese de Proteínas , Secretases da Proteína Precursora do Amiloide/genética , Animais , Ácido Aspártico Endopeptidases/genética , Astrócitos/citologia , Células Cultivadas , Hipocampo/citologia , Humanos , Neurônios/citologia , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley
6.
Aging Cell ; 10(1): 172-83, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21108725

RESUMO

The characterization of iron handling in neurons is still lacking, with contradictory and incomplete results. In particular, the relevance of non-transferrin-bound iron (NTBI), under physiologic conditions, during aging and in neurodegenerative disorders, is undetermined. This study investigates the mechanisms underlying NTBI entry into primary hippocampal neurons and evaluates the consequence of iron elevation on neuronal viability. Fluorescence-based single cell analysis revealed that an increase in extracellular free Fe(2+) (the main component of NTBI pool) is sufficient to promote Fe(2+) entry and that activation of either N-methyl-d-aspartate receptors (NMDARs) or voltage operated calcium channels (VOCCs) significantly potentiates this pathway, independently of changes in intracellular Ca(2+) concentration ([Ca(2+) ](i) ). The enhancement of Fe(2+) influx was accompanied by a corresponding elevation of reactive oxygen species (ROS) production and higher susceptibility of neurons to death. Interestingly, iron vulnerability increased in aged cultures. Scavenging of mitochondrial ROS was the most powerful protective treatment against iron overload, being able to preserve the mitochondrial membrane potential and to safeguard the morphologic integrity of these organelles. Overall, we demonstrate for the first time that Fe(2+) and Ca(2+) compete for common routes (i.e. NMDARs and different types of VOCCs) to enter primary neurons. These iron entry pathways are not controlled by the intracellular iron level and can be harmful for neurons during aging and in conditions of elevated NTBI levels. Finally, our data draw the attention to mitochondria as a potential target for the treatment of the neurodegenerative processes induced by iron dysmetabolism.


Assuntos
Transporte de Íons/fisiologia , Ferro/metabolismo , Mitocôndrias/metabolismo , Neurônios/metabolismo , Animais , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Técnicas de Cultura de Células , Morte Celular/fisiologia , Células Cultivadas , Hipocampo/citologia , Hipocampo/metabolismo , Distúrbios do Metabolismo do Ferro/prevenção & controle , Potencial da Membrana Mitocondrial , Microscopia de Fluorescência , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Análise de Célula Única
7.
Biochem Soc Trans ; 36(Pt 6): 1309-12, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19021546

RESUMO

Iron and calcium are required for general cellular functions, as well as for specific neuronal-related activities. However, a pathological increase in their levels favours oxidative stress and mitochondrial damage, leading to neuronal death. Neurodegeneration can thus be determined by alterations in ionic homoeostasis and/or pro-oxidative-antioxidative equilibrium, two conditions that vary significantly in different kinds of brain cell and also with aging. In the present review, we re-evaluate recent data on NTBI (non-transferrin bound iron) uptake that suggest a strict interplay with the mechanisms of calcium control. In particular, we focus on the use of common entry pathways and on the way cytosolic calcium can modulate iron entry and determine its intracellular accumulation.


Assuntos
Cálcio/metabolismo , Sistema Nervoso Central/metabolismo , Doença , Saúde , Ferro/metabolismo , Animais , Proteínas de Transporte de Cátions/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...