Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
JMIR Res Protoc ; 13: e52957, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687985

RESUMO

BACKGROUND: Healthy lifestyle interventions have a positive impact on multiple disease trajectories, including cancer-related outcomes. Specifically, appropriate habitual physical activity, adequate sleep, and a regular wholesome diet are of paramount importance for the wellness and supportive care of survivors of cancer. Mobile health (mHealth) apps have the potential to support novel tailored lifestyle interventions. OBJECTIVE: This observational pilot study aims to assess the feasibility of mHealth multidimensional longitudinal monitoring in survivors of cancer. The primary objective is to test the compliance (user engagement) with the monitoring solution. Secondary objectives include recording clinically relevant subjective and objective measures collected through the digital solution. METHODS: This is a monocentric pilot study taking place in Bangor, Wales, United Kingdom. We plan to enroll up to 100 adult survivors of cancer not receiving toxic anticancer treatment, who will provide self-reported behavioral data recorded via a dedicated app and validated questionnaires and objective data automatically collected by a paired smartwatch over 16 weeks. The participants will continue with their normal routine surveillance care for their cancer. The primary end point is feasibility (eg, mHealth monitoring acceptability). Composite secondary end points include clinically relevant patient-reported outcome measures (eg, the Edmonton Symptom Assessment System score) and objective physiological measures (eg, step counts). This trial received a favorable ethical review in May 2023 (Integrated Research Application System 301068). RESULTS: This study is part of an array of pilots within a European Union funded project, entitled "GATEKEEPER," conducted at different sites across Europe and covering various chronic diseases. Study accrual is anticipated to commence in January 2024 and continue until June 2024. It is hypothesized that mHealth monitoring will be feasible in survivors of cancer; specifically, at least 50% (50/100) of the participants will engage with the app at least once a week in 8 of the 16 study weeks. CONCLUSIONS: In a population with potentially complex clinical needs, this pilot study will test the feasibility of multidimensional remote monitoring of patient-reported outcomes and physiological parameters. Satisfactory compliance with the use of the app and smartwatch, whether confirmed or infirmed through this study, will be propaedeutic to the development of innovative mHealth interventions in survivors of cancer. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): PRR1-10.2196/52957.


Assuntos
Sobreviventes de Câncer , Telemedicina , Humanos , Projetos Piloto , Telemedicina/métodos , Masculino , Feminino , Adulto , Aplicativos Móveis , Pessoa de Meia-Idade , Neoplasias/terapia , País de Gales , Estudos de Viabilidade , Idoso , Estudos Observacionais como Assunto/métodos
2.
Lancet Digit Health ; 6(1): e23-e32, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37968170

RESUMO

BACKGROUND: Remote digital health interventions to enhance physical activity provide a potential solution to improve the sedentary behaviour, physical inactivity, and poor health-related quality of life that are typical of chronic conditions, particularly for people with chronic kidney disease. However, there is a need for high-quality evidence to support implementation in clinical practice. The Kidney BEAM trial evaluated the clinical effect of a 12-week physical activity digital health intervention on health-related quality of life. METHODS: In a single-blind, randomised controlled trial conducted at 11 centres in the UK, adult participants (aged ≥18 years) with chronic kidney disease were recruited and randomly assigned (1:1) to the Kidney BEAM physical activity digital health intervention or a waiting list control group. Randomisation was performed with a web-based system, in randomly permuted blocks of six. Outcome assessors were masked to treatment allocation. The primary outcome was the difference in the Kidney Disease Quality of Life Short Form version 1.3 Mental Component Summary (KDQoL-SF1.3 MCS) between baseline and 12 weeks. The trial was powered to detect a clinically meaningful difference of 3 arbitrary units (AU) in KDQoL-SF1.3 MCS. Outcomes were analysed by an intention-to-treat approach using an analysis of covariance model, with baseline measures and age as covariates. The trial was registered with ClinicalTrials.gov, NCT04872933. FINDINGS: Between May 6, 2021, and Oct 30, 2022, 1102 individuals were assessed for eligibility, of whom 340 participants were enrolled and randomly assigned to the Kidney BEAM intervention group (n=173) or the waiting list control group (n=167). 268 participants completed the trial (112 in the Kidney BEAM group and 156 in the waiting list control group). All 340 randomly assigned participants were included in the intention-to treat population. At 12 weeks, there was a significant improvement in KDQoL-SF.13 MCS score in the Kidney BEAM group (from mean 44·6 AU [SD 10·8] at baseline to 47·0 AU [10·6] at 12 weeks) compared with the waiting list control group (from 46·1 AU [10·5] to 45·0 AU [10·1]; between-group difference of 3·1 AU [95% CI 1·8-4·4]; p<0·0001). INTERPRETATION: The Kidney BEAM physical activity platform is an efficacious digital health intervention to improve mental health-related quality of life in patients with chronic kidney disease. These findings could facilitate the incorporation of remote digital health interventions into clinical practice and offer a potential intervention worthy of investigation in other chronic conditions. FUNDING: Kidney Research UK.


Assuntos
Saúde Digital , Insuficiência Renal Crônica , Adulto , Humanos , Adolescente , Qualidade de Vida , Método Simples-Cego , Resultado do Tratamento , Exercício Físico , Insuficiência Renal Crônica/terapia , Rim , Doença Crônica , Reino Unido
4.
Neuroimage ; 260: 119397, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35752413

RESUMO

Environmental hypoxia (fraction of inspired oxygen (FIO2) ∼ 0.120) is known to trigger a global increase in cerebral blood flow (CBF). However, regionally, a heterogeneous response is reported, particularly within the posterior cingulate cortex (PCC) where decreased CBF is found after two hours of hypoxic exposure. Furthermore, hypoxia reverses task-evoked BOLD signals within the PCC, and other regions of the default mode network, suggesting a reversal of neurovascular coupling. An alternative explanation is that the neural architecture supporting cognitive tasks is reorganised. Therefore, to confirm if this previous result is neural or vascular in origin, a measure of neural activity that is not haemodynamic-dependant is required. To achieve this, we utilised functional magnetic resonance spectroscopy to probe the glutamate response to memory recall in the PCC during normoxia (FIO2 = 0.209) and after two hours of poikilocapnic hypoxia (FIO2 = 0.120). We also acquired ASL-based measures of CBF to confirm previous findings of reduced CBF within the PCC in hypoxia. Consistent with previous findings, hypoxia induced a reduction in CBF within the PCC and other regions of the default mode network. Under normoxic conditions, memory recall was associated with an 8% increase in PCC glutamate compared to rest (P = 0.019); a change which was not observed during hypoxia. However, exploratory analysis of other neurometabolites showed that PCC glucose was reduced during hypoxia compared to normoxia both at rest (P = 0.039) and during the task (P = 0.046). We conclude that hypoxia alters the activity-induced increase in glutamate, which may reflect a reduction in oxidative metabolism within the PCC. The reduction in glucose in hypoxia reflects continued metabolism, presumably by non-oxidative means, without replacement of glucose due to reduced CBF.


Assuntos
Circulação Cerebrovascular , Giro do Cíngulo , Circulação Cerebrovascular/fisiologia , Glucose , Glutamatos , Giro do Cíngulo/diagnóstico por imagem , Humanos , Hipóxia , Imageamento por Ressonância Magnética/métodos , Oxigênio
6.
Kidney Int Rep ; 6(8): 2159-2170, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34386665

RESUMO

INTRODUCTION: Whether clinically implementable exercise interventions in people receiving hemodialysis (HD) therapy improve health-related quality of life (HRQoL) remains unknown. The PrEscription of intraDialytic exercise to improve quAlity of Life (PEDAL) study evaluated the clinical benefit and cost-effectiveness of a 6-month intradialytic exercise program. METHODS: In a multicenter, single-blinded, randomized, controlled trial, people receiving HD were randomly assigned to (i) intradialytic exercise training (exercise intervention group [EX]) and (ii) usual care (control group [CON]). Primary outcome was change in Kidney Disease Quality of Life Short-Form Physical Component Summary (KDQOL-SF 1.3 PCS) from baseline to 6 months. Cost-effectiveness was determined using health economic analysis; physiological impairment was evaluated by peak oxygen uptake; and harms were recorded. RESULTS: We randomized 379 participants; 335 and 243 patients (EX n = 127; CON n = 116) completed baseline and 6-month assessments, respectively. Mean difference in change PCS from baseline to 6 months between EX and CON was 2.4 (95% confidence interval [CI]: -0.1 to 4.8) arbitrary units (P = 0.055); no improvements were observed in peak oxygen uptake or secondary outcome measures. Participants in the intervention group had poor compliance (47%) and poor adherence (18%) to the exercise prescription. Cost of delivering intervention ranged from US$598 to US$1092 per participant per year. The number of participants with harms was similar between EX (n = 69) and CON (n = 56). A primary limitation was the lack of an attention CON. Many patients also withdrew from the study or were too unwell to complete all physiological outcome assessments. CONCLUSIONS: A 6-month intradialytic aerobic exercise program was not clinically beneficial in improving HRQoL as delivered to this cohort of deconditioned patients on HD.

7.
Health Technol Assess ; 25(40): 1-52, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34156335

RESUMO

BACKGROUND: Whether or not clinically implementable exercise interventions in haemodialysis patients improve quality of life remains unknown. OBJECTIVES: The PEDAL (PrEscription of intraDialytic exercise to improve quAlity of Life in patients with chronic kidney disease) trial evaluated the clinical effectiveness and cost-effectiveness of a 6-month intradialytic exercise programme on quality of life compared with usual care for haemodialysis patients. DESIGN: We conducted a prospective, multicentre randomised controlled trial of haemodialysis patients from five haemodialysis centres in the UK and randomly assigned them (1 : 1) using a web-based system to (1) intradialytic exercise training plus usual-care maintenance haemodialysis or (2) usual-care maintenance haemodialysis. SETTING: The setting was five dialysis units across the UK from 2015 to 2019. PARTICIPANTS: The participants were adult patients with end-stage kidney disease who had been receiving haemodialysis therapy for > 1 year. INTERVENTIONS: Participants were randomised to receive usual-care maintenance haemodialysis or usual-care maintenance haemodialysis plus intradialytic exercise training. MAIN OUTCOME MEASURES: The primary outcome of the study was change in Kidney Disease Quality of Life Short Form, version 1.3, physical component summary score (from baseline to 6 months). Cost-effectiveness was determined using health economic analysis and the EuroQol-5 Dimensions, five-level version. Additional secondary outcomes included quality of life (Kidney Disease Quality of Life Short Form, version 1.3, generic multi-item and burden of kidney disease scales), functional capacity (sit-to-stand 60 and 10-metre Timed Up and Go tests), physiological measures (peak oxygen uptake and arterial stiffness), habitual physical activity levels (measured by the International Physical Activity Questionnaire and Duke Activity Status Index), fear of falling (measured by the Tinetti Falls Efficacy Scale), anthropometric measures (body mass index and waist circumference), clinical measures (including medication use, resting blood pressure, routine biochemistry, hospitalisations) and harms associated with intervention. A nested qualitative study was conducted. RESULTS: We randomised 379 participants; 335 patients completed baseline assessments and 243 patients (intervention, n = 127; control, n = 116) completed 6-month assessments. The mean difference in change in physical component summary score from baseline to 6 months between the intervention group and control group was 2.4 arbitrary units (95% confidence interval -0.1 to 4.8 arbitrary units; p = 0.055). Participants in the intervention group had poor compliance (49%) and very poor adherence (18%) to the exercise prescription. The cost of delivering the intervention ranged from £463 to £848 per participant per year. The number of participants with harms was similar in the intervention (n = 69) and control (n = 56) groups. LIMITATIONS: Participants could not be blinded to the intervention; however, outcome assessors were blinded to group allocation. CONCLUSIONS: On trial completion the primary outcome (Kidney Disease Quality of Life Short Form, version 1.3, physical component summary score) was not statistically improved compared with usual care. The findings suggest that implementation of an intradialytic cycling programme is not an effective intervention to enhance health-related quality of life, as delivered to this cohort of deconditioned patients receiving haemodialysis. FUTURE WORK: The benefits of longer interventions, including progressive resistance training, should be confirmed even if extradialytic delivery is required. Future studies also need to evaluate whether or not there are subgroups of patients who may benefit from this type of intervention, and whether or not there is scope to optimise the exercise intervention to improve compliance and clinical effectiveness. TRIAL REGISTRATION: Current Controlled Trials ISRCTN83508514. FUNDING: This project was funded by the National Institute for Health Research (NIHR) Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 25, No. 40. See the NIHR Journals Library website for further project information.


Although the benefits of exercise in the general population are well recognised, we do not know if offering cycling exercise during haemodialysis is an effective way to improve quality of life, and if this would be a cost-effective way to provide exercise training for this patient population. To determine whether or not this type of exercise training is effective, and provides value for money, this study compared cycling during haemodialysis treatment, three times per week for 6 months, with usual care that does not include routine delivery of any exercise training. Five regions of the UK were included in the study. We compared the results from the two groups at the start of the study and at 6 months, after correcting for age and diabetes status. We also assessed the economic impact of delivering the cycling during haemodialysis programme and interviewed people from different regions of the UK in both groups. The baseline assessments revealed a deconditioned population in the study. There was no difference in quality of life or any physical function measures between the group that performed cycling during haemodialysis and the usual-care group. Compliance with the exercise intervention was very poor. Interviews with patients showed that patient engagement with the exercise training was linked to the presence of an exercise culture, and leadership to provide this, in the renal unit. An economic evaluation showed that delivering cycling during haemodialysis would not be value for money when delivered to a deconditioned haemodialysis population. Ways to engage patients with exercise training during their haemodialysis treatment should be explored further.


Assuntos
Falência Renal Crônica , Qualidade de Vida , Acidentes por Quedas , Análise Custo-Benefício , Exercício Físico , Terapia por Exercício , Medo , Humanos , Falência Renal Crônica/terapia , Estudos Prospectivos , Diálise Renal
8.
Exp Physiol ; 106(8): 1699-1709, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34036677

RESUMO

NEW FINDINGS: What is the central question of this study? The aim was primarily to determine the effect of hypoxia on microvascular function and secondarily whether superior cardiorespiratory fitness is protective against hypoxia-induced impairment in vascular function. What is the main finding and its importance? Hypoxia reduced endothelium-dependent but not endothelium-independent microvascular function. The extent of impairment was twofold higher in the microcirculation compared with the large blood vessels. This study suggests that individuals with superior cardiorespiratory fitness might preserve microvascular function in hypoxia. These findings highlight the sensitivity of the microvascular circulation to hypoxia. ABSTRACT: Hypoxia is associated with diminished bioavailability of the endothelium-derived vasodilator, nitric oxide (NO). Diminished NO bioavailability can have deleterious effects on endothelial function. The endothelium is a heterogeneous tissue; therefore, a comprehensive assessment of endothelial function is crucial to understand the significance of hypoxia-induced endothelial dysfunction. We hypothesized that acute hypoxia would have a deleterious effect on microvascular and large vessel endothelial function. Twenty-nine healthy adults [24 (SD = 4 ) years of age] completed normoxic and hypoxic [inspired O2  fraction = 0.209] trials in this double-blinded, counterbalanced crossover study. After 30 min, we assessed the laser Doppler imaging-determined perfusion response to iontophoresis of ACh as a measure of endothelium-dependent microvascular function and iontophoresis of sodium nitroprusside as a measure of endothelium-independent microvascular function. After 60 min, we assessed brachial flow-mediated dilatation as a measure of large vessel endothelial function. Thirty minutes of hypoxia reduced endothelium-dependent microvascular function determined by the perfusion response to ACh (median difference (x̃∆) = -109% {interquartile range: 542.7}, P < 0.05), but not endothelium-independent microvascular function determined by the perfusion response to sodium nitroprusside (x̃∆ = 69% {interquartile range: 453.7}, P = 0.6). In addition, 60 min of hypoxia reduced allometrically scaled flow-mediated dilatation compared with normoxia ( x¯Δ=-1.19 [95% CI = -1.80, -0.58 (Confidence Intervals)]%, P < 0.001). The decrease in microvascular endothelial function was associated with cardiorespiratory fitness (r  = 0.45, P = 0.02). In conclusion, acute exposure to normobaric hypoxia significantly reduced endothelium-dependent vasodilatory capacity in small and large vessels. Collectively, these findings highlight the sensitivity of the microvascular circulation to hypoxic insult, particularly in those with poor cardiorespiratory fitness.


Assuntos
Endotélio Vascular , Vasodilatação , Adulto , Estudos Cross-Over , Humanos , Hipóxia , Iontoforese , Fluxometria por Laser-Doppler , Microcirculação/fisiologia , Nitroprussiato/farmacologia , Vasodilatadores/farmacologia
9.
Exp Physiol ; 106(7): 1535-1548, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33866627

RESUMO

NEW FINDINGS: What is the central question of this study? Is blood flow regulation to hypoxia different between the internal carotid arteries (ICAs) and vertebral arteries (VAs), and what is the measurement error in unilateral extracranial artery assessments compared to bilateral? What is the main finding and its importance? ICA and VA blood flow regulation to hypoxia is comparable when factoring for vessel type and vessel side. Compared to bilateral assessment, vessels assessed unilaterally had individual measurement errors of up to 37%. Assessing the vessel with the larger resting blood flow, not the left or right vessel, reduces unilateral measurement error. ABSTRACT: Whether blood flow regulation to hypoxia is similar between left and right internal carotid arteries (ICAs) and vertebral arteries (VAs) is unclear. Extracranial blood flow is regularly calculated by doubling a unilateral assessment; however, lateral artery differences may lead to measurement error. This study aimed to determine extracranial blood flow regulation to hypoxia when factoring for vessel type (ICAs or VAs) and vessel side (left or right) effects, and to investigate unilateral assessment measurement error compared to bilateral assessment. In a repeated-measures crossover design, extracranial arteries of 44 participants were assessed bilaterally by duplex ultrasound during 90 min of normoxic and poikilocapnic hypoxic (12.0% fraction of inspired oxygen) conditions. Linear mixed model analyses revealed no Condition × Vessel Type × Vessel Side interaction for blood flow, vessel diameter and flow velocity (all P > 0.05) indicating left and right ICA and VA blood flow regulation to hypoxia was similar. Bilateral hypoxic reactivity was comparable (ICAs, 1.4 (1.0) vs. VAs, 1.7 (1.1) Δ%·Δ SpO2-1 ; P = 0.12). Compared to bilateral assessment, unilateral mean measurement error of the relative blood flow response to hypoxia was up to 5%, but individual errors reached 37% and were greatest in ICAs and VAs with the smaller resting blood flow due to a ratio-scaling problem. In conclusion, left and right ICA and VA regulation to hypoxia is comparable when factoring for vessel type and vessel side. Assessing the ICA and VA vessels with the larger resting blood flow, not the left or right vessel, reduces unilateral measurement error.


Assuntos
Artéria Carótida Interna , Artéria Vertebral , Velocidade do Fluxo Sanguíneo/fisiologia , Artéria Carótida Interna/fisiologia , Circulação Cerebrovascular/fisiologia , Humanos , Hipóxia , Fluxo Sanguíneo Regional , Artéria Vertebral/fisiologia
10.
J Cereb Blood Flow Metab ; 41(4): 805-818, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32538282

RESUMO

Local changes in cerebral blood flow are thought to match changes in neuronal activity, a phenomenon termed neurovascular coupling. Hypoxia increases global resting cerebral blood flow, but regional cerebral blood flow (rCBF) changes are non-uniform. Hypoxia decreases baseline rCBF to the default mode network (DMN), which could reflect either decreased neuronal activity or altered neurovascular coupling. To distinguish between these hypotheses, we characterized the effects of hypoxia on baseline rCBF, task performance, and the hemodynamic (BOLD) response to task activity. During hypoxia, baseline CBF increased across most of the brain, but decreased in DMN regions. Performance on memory recall and motion detection tasks was not diminished, suggesting task-relevant neuronal activity was unaffected. Hypoxia reversed both positive and negative task-evoked BOLD responses in the DMN, suggesting hypoxia reverses neurovascular coupling in the DMN of healthy adults. The reversal of the BOLD response was specific to the DMN. Hypoxia produced modest increases in activations in the visual attention network (VAN) during the motion detection task, and had no effect on activations in the visual cortex during visual stimulation. This regional specificity may be particularly pertinent to clinical populations characterized by hypoxemia and may enhance understanding of regional specificity in neurodegenerative disease pathology.


Assuntos
Rede de Modo Padrão/efeitos dos fármacos , Hipóxia Encefálica/psicologia , Acoplamento Neurovascular/efeitos dos fármacos , Atenção , Circulação Cerebrovascular , Estudos Cross-Over , Método Duplo-Cego , Feminino , Hemodinâmica , Humanos , Hipóxia Encefálica/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Rememoração Mental , Percepção de Movimento , Rede Nervosa/fisiopatologia , Neurônios , Estimulação Luminosa , Desempenho Psicomotor , Córtex Visual/fisiopatologia , Adulto Jovem
11.
Semin Dial ; 32(4): 368-378, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30968465

RESUMO

Dialysis adequacy is an independent predictor of high mortality rates in hemodialysis patients. Intradialytic exercise is a potential strategy to increase uremic solute removal by increasing blood flow to low perfusion tissue beds. The purpose of this review is to establish the efficacy of intradialytic exercise for hemodialysis adequacy. Additionally, this review aims to provide practical information to aid health care professionals implement intradialytic exercise for dialysis adequacy. Database and hand searches identified 15 published interventional studies that implemented intradialytic exercise for dialysis adequacy as a primary outcome measure in adult maintenance hemodialysis patients. Data pertaining to dialytic solute clearance of urea, creatinine, beta2 microglobulin, phosphate, and potassium were extracted. Mean differences, normalized to percentages, and effect sizes were calculated and reported. The current data pertaining to the use of intradialytic exercise for improving dialysis adequacy in terms of Kt/Vurea or small molecule uremic toxin clearance are equivocal. Limited data showed that intradialytic exercise has no effect middle molecule toxin (beta2 - microglobulin) clearance. Intradialytic exercise favored increased phosphate removal showing medium to large effects for reduced serum concentrations, reduced rebound and increased clearance. In summary, supervised light to moderate intradialytic aerobic cycling appears to be beneficial for increasing phosphate removal and may be an adjunct therapy for patients failing to meet clinical phosphate targets. Further work is required to establish the effect of intradialytic exercise on Kt/Vurea and other middle molecule and protein bound solutes. Research aimed at establishing the most effective exercise prescription for improved solute clearance is warranted.


Assuntos
Soluções para Diálise/farmacocinética , Terapia por Exercício/métodos , Falência Renal Crônica/terapia , Qualidade de Vida , Diálise Renal/métodos , Uremia/prevenção & controle , Idoso , Terapia Combinada , Creatinina/sangue , Feminino , Taxa de Filtração Glomerular , Humanos , Falência Renal Crônica/diagnóstico , Testes de Função Renal , Masculino , Pessoa de Meia-Idade , Prognóstico , Medição de Risco , Resultado do Tratamento , Ureia/sangue
12.
J Appl Physiol (1985) ; 123(4): 983-992, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28684588

RESUMO

Dietary nitrate supplementation enhances sea level performance and may ameliorate hypoxemia at high altitude. However, nitrate may exacerbate acute mountain sickness (AMS), specifically headache. This study investigated the effect of nitrate supplementation on AMS symptoms and exercise responses with 6-h hypoxia. Twenty recreationally active men [age, 22 ± 4 yr, maximal oxygen consumption (V̇o2max), 51 ± 6 ml·min-1·kg-1, means ± SD] completed this randomized double-blinded placebo-controlled crossover study. Twelve participants were classified as AMS- on the basis of Environmental Symptoms Questionnaire [Acute Cerebral Mountain Sickness score (AMS-C)] <0.7 in both trials, and five participants were classified as AMS+ on the basis of AMS-C ≥0.7 on placebo. Five days of nitrate supplementation (70-ml beetroot juice containing ~6.4 mmol nitrate daily) increased plasma NO metabolites by 182 µM compared with placebo but did not reduce AMS or improve exercise performance. After 4-h hypoxia [inspired O2 fraction ([Formula: see text]) = 0.124], nitrate increased AMS-C and headache severity (visual analog scale; whole sample ∆10 [1, 20] mm, mean difference [95% confidence interval]; P = 0.03) compared with placebo. In addition, after 5-h hypoxia, nitrate increased sense of effort during submaximal exercise (∆7 [-1, 14]; P = 0.07). In AMS-, nitrate did not alter headache or sense of effort. In contrast, in AMS+, nitrate increased headache severity (∆26 [-3, 56] mm; P = 0.07), sense of effort (∆14 [1, 28]; P = 0.04), oxygen consumption, ventilation, and mean arterial pressure during submaximal exercise. On the next day, in a separate acute hypoxic exercise test ([Formula: see text] = 0.141), nitrate did not improve time to exhaustion at 80% hypoxic V̇o2max In conclusion, dietary nitrate increases AMS and sense of effort during exercise, particularly in those who experience AMS. Dietary nitrate is therefore not recommended as an AMS prophylactic or ergogenic aid in nonacclimatized individuals at altitude.NEW & NOTEWORTHY This is the first study to identify that the popular dietary nitrate supplement (beetroot) does not reduce acute mountain sickness (AMS) or improve exercise performance during 6-h hypoxia. The consumption of nitrate in those susceptible to AMS exacerbates AMS symptoms (headache) and sense of effort and raises oxygen cost, ventilation, and blood pressure during walking exercise in 6-h hypoxia. These data question the suitability of nitrate supplementation during altitude travel in nonacclimatized people.


Assuntos
Doença da Altitude/fisiopatologia , Exercício Físico/fisiologia , Hipóxia/fisiopatologia , Nitratos/administração & dosagem , Consumo de Oxigênio/fisiologia , Esforço Físico/fisiologia , Adolescente , Adulto , Doença da Altitude/diagnóstico , Estudos Cross-Over , Suplementos Nutricionais , Método Duplo-Cego , Teste de Esforço , Humanos , Masculino , Índice de Gravidade de Doença , Adulto Jovem
13.
High Alt Med Biol ; 18(2): 152-162, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28394182

RESUMO

Rossetti, Gabriella M.K., Jamie H. Macdonald, Matthew Smith, Anna R. Jackson, Nigel Callender, Hannah K. Newcombe, Heather M. Storey, Sebastian Willis, Jojanneke van den Beukel, Jonathan Woodward, James Pollard, Benjamin Wood, Victoria Newton, Jana Virian, Owen Haswell, and Samuel J. Oliver. MEDEX2015: Greater sea-level fitness is associated with lower sense of effort during Himalayan trekking without worse acute mountain sickness. High Alt Med Biol. 18:152-162, 2017.-This study examined the complex relationships of fitness and hypoxic sensitivity with submaximal exercise responses and acute mountain sickness (AMS) at altitude. Determining these relationships is necessary before fitness or hypoxic sensitivity tests can be recommended to appraise individuals' readiness for altitude. Forty-four trekkers (26 men; 18 women; 20-67 years) completed a loaded walking test and a fitness questionnaire in normoxia to measure and estimate sea-level maximal aerobic capacity (maximum oxygen consumption [[Formula: see text]O2max]), respectively. Participants also completed a hypoxic exercise test to determine hypoxic sensitivity (cardiac, ventilatory, and arterial oxygen saturation responses to acute hypoxia, fraction of inspired oxygen [Fio2] = 0.112). One month later, all participants completed a 3-week trek to 5085 m with the same ascent profile. On ascent to 5085 m, ratings of perceived exertion (RPEascent), fatigue by Brunel Mood Scale, and AMS were recorded daily. At 5085 m, RPE during a fixed workload step test (RPEfixed) and step rate during perceptually regulated exercise (STEPRPE35) were recorded. Greater sea-level [Formula: see text]O2max was associated with, and predicted, lower sense of effort (RPEascent; r = -0.43; p < 0.001; RPEfixed; r = -0.69; p < 0.001) and higher step rate (STEPRPE35; r = 0.62; p < 0.01), but not worse AMS (r = 0.13; p = 0.4) or arterial oxygen desaturation (r = 0.07; p = 0.7). Lower RPEascent was also associated with better mood, including less fatigue (r = 0.57; p < 0.001). Hypoxic sensitivity was not associated with, and did not add to the prediction of submaximal exercise responses or AMS. In conclusion, participants with greater sea-level fitness reported less effort during simulated and actual trekking activities, had better mood (less fatigue), and chose a higher step rate during perceptually regulated exercise, but did not suffer from worse AMS or arterial oxygen desaturation. Simple sea-level fitness tests may be used to aid preparation for high-altitude travel.


Assuntos
Doença da Altitude/fisiopatologia , Altitude , Tolerância ao Exercício/fisiologia , Montanhismo/fisiologia , Aptidão Física/fisiologia , Adulto , Idoso , Doença da Altitude/etiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Consumo de Oxigênio/fisiologia , Testes de Função Respiratória , Tibet , Adulto Jovem
14.
J Physiol ; 595(3): 935-947, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27506309

RESUMO

KEY POINTS: Cognitive performance is impaired by hypoxia despite global cerebral oxygen delivery and metabolism being maintained. Using arterial spin labelled (ASL) magnetic resonance imaging, this is the first study to show regional reductions in cerebral blood flow (CBF) in response to decreased oxygen supply (hypoxia) at 2 h that increased in area and became more pronounced at 10 h. Reductions in CBF were seen in brain regions typically associated with the 'default mode' or 'task negative' network. Regional reductions in CBF, and associated vasoconstriction, within the default mode network in hypoxia is supported by increased vasodilatation in these regions to a subsequent hypercapnic (5% CO2 ) challenge. These results suggest an anatomical mechanism through which hypoxia may cause previously reported deficits in cognitive performance. ABSTRACT: Hypoxia causes an increase in global cerebral blood flow, which maintains global cerebral oxygen delivery and metabolism. However, neurological deficits are abundant under hypoxic conditions. We investigated regional cerebral microvascular responses to acute (2 h) and prolonged (10 h) poikilocapnic normobaric hypoxia. We found that 2 h of hypoxia caused an expected increase in frontal cortical grey matter perfusion but unexpected perfusion decreases in regions of the brain normally associated with the 'default mode' or 'task negative' network. After 10 h in hypoxia, decreased blood flow to the major nodes of the default mode network became more pronounced and widespread. The use of a hypercapnic challenge (5% CO2 ) confirmed that these reductions in cerebral blood flow from hypoxia were related to vasoconstriction. Our findings demonstrate steady-state deactivation of the default network under acute hypoxia, which become more pronounced over time. Moreover, these data provide a unique insight into the nuanced localized cerebrovascular response to hypoxia that is not attainable through traditional methods. The observation of reduced perfusion in the posterior cingulate and cuneal cortex, which are regions assumed to play a role in declarative and procedural memory, provides an anatomical mechanism through which hypoxia may cause deficits in working memory.


Assuntos
Encéfalo/fisiopatologia , Circulação Cerebrovascular , Hipóxia/fisiopatologia , Adulto , Encéfalo/diagnóstico por imagem , Humanos , Hipóxia/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Memória de Curto Prazo/fisiologia , Adulto Jovem
15.
Int J Sports Physiol Perform ; 10(2): 183-90, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25010645

RESUMO

PURPOSE: To identify physiological, psychological, and skill characteristics that explain performance in downhill (DH) mountain-bike racing. METHODS: Four studies were used to (1) identify factors potentially contributing to DH performance (using an expert focus group), (2) develop and validate a measure of rider skill (using video analysis and expert judge evaluation), (3) evaluate whether physiological, psychological, and skill variables contribute to performance at a DH competition, and (4) test the specific contribution of aerobic capacity to DH performance. RESULTS: STUDY 1 identified aerobic capacity, handgrip endurance, anaerobic power, rider skill, and self-confidence as potentially important for DH. In study 2 the rider-skill measure displayed good interrater reliability. Study 3 found that rider skill and handgrip endurance were significantly related to DH ride time (ß=-0.76 and -0.14, respectively; R2=.73), with exploratory analyses suggesting that DH ride time may also be influenced by self-confidence and aerobic capacity. Study 4 confirmed aerobic capacity as an important variable influencing DH performance (for a DH ride, mean oxygen uptake was 49±5 mL·kg(-1)·min(-1), and 90% of the ride was completed above the 1st ventilatory threshold). CONCLUSIONS: In order of importance, rider skill, handgrip endurance, self-confidence, and aerobic capacity were identified as variables influencing DH performance. Practically, this study provides a novel assessment of rider skill that could be used by coaches to monitor training and identify talent. Novel intervention targets to enhance DH performance were also identified, including self-confidence and aerobic capacity.


Assuntos
Desempenho Atlético/fisiologia , Ciclismo/fisiologia , Comportamento Competitivo/fisiologia , Destreza Motora/fisiologia , Adulto , Limiar Anaeróbio/fisiologia , Ciclismo/psicologia , Força da Mão/fisiologia , Humanos , Masculino , Consumo de Oxigênio/fisiologia , Autoimagem , Adulto Jovem
16.
Ann Neurol ; 75(6): 890-8, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24788400

RESUMO

OBJECTIVE: The study was undertaken to determine whether normobaric hypoxia causes elevated brain volume and intracranial pressure in individuals with symptoms consistent with acute mountain sickness (AMS). METHODS: Thirteen males age = (26 (sd 6)) years were exposed to normobaric hypoxia (12% O2 ) and normoxia (21% O2 ). After 2 and 10 hours, AMS symptoms were assessed alongside ventricular and venous vessel volumes, cerebral blood flow, regional brain volumes, and intracranial pressure, using high-resolution magnetic resonance imaging. RESULTS: In normoxia, neither lateral ventricular volume (R(2) = 0.07, p = 0.40) nor predominance of unilateral transverse venous sinus drainage (R(2) = 0.07, p = 0.45) was related to AMS symptoms. Furthermore, despite an increase in cerebral blood flow after 2 hours of hypoxia (hypoxia vs normoxia: Δ148ml/min(-1) , 95% confidence interval [CI] = 58 to 238), by 10 hours, when AMS symptoms had developed, cerebral blood flow was normal (Δ-51ml/min(-1) , 95% CI = -141 to 39). Conversely, at 10 hours brain volume was increased (Δ59ml, 95% CI = 8 to 110), predominantly due to an increase in gray matter volume (Δ73ml, 95% CI = 25 to 120). Therefore, cerebral spinal fluid volume was decreased (Δ-40ml, 95% CI = -67 to -14). The intracranial pressure response to hypoxia varied between individuals, and as hypothesized, the most AMS-symptomatic participants had the largest increases in intracranial pressure (AMS present, Δ7mmHg, 95% CI = -2.5 to 17.3; AMS not present, Δ-1mmHg, 95% CI = -3.3 to 0.5). Consequently, there was a significant relationship between the change in intracranial pressure and AMS symptom severity (R(2) = 0.71, p = 0.002). INTERPRETATION: The data provide the strongest evidence to date to support the hypothesis that the "random" nature of AMS symptomology is explained by a variable intracranial pressure response to hypoxia.


Assuntos
Doença da Altitude , Encéfalo/patologia , Circulação Cerebrovascular/fisiologia , Hipóxia/complicações , Hipóxia/patologia , Hipertensão Intracraniana/etiologia , Doença Aguda , Adulto , Doença da Altitude/complicações , Doença da Altitude/etiologia , Doença da Altitude/patologia , Lateralidade Funcional , Frequência Cardíaca , Hemodinâmica , Humanos , Imageamento por Ressonância Magnética , Masculino , Oxigênio/metabolismo , Fatores de Tempo , Adulto Jovem
17.
Exp Physiol ; 99(6): 909-20, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24706191

RESUMO

The primary aim of this study was to investigate the effect of systemic poikilocapnic hypoxia on forearm cutaneous thermal hyperaemia. A secondary aim was to examine the relationship between the individual susceptibility to oxygen desaturation and cutaneous vasodilator capacity. Twelve healthy participants (seven male) were exposed to 9 h of normoxia and 12% poikilocapnic hypoxia in a temperature- and humidity-controlled environmental chamber. Skin blood flow was assessed at the ventral forearm using laser Doppler flowmetry combined with rapid local heating. After 6 min at baseline (skin temperature clamped at 33°C), local skin temperature was elevated at a rate of 0.5°C every 5 s up to 42°C to elicit a sensory axon response and then held constant for 30 min to cause a plateau. Skin blood flow was calculated as cutaneous vascular conductance [CVC; in perfusion units/mean arterial blood pressure (APU mmHg(-1))] and expressed in raw format and relative to heating at 44°C in normoxia (%CVC44). During hypoxaemia, vasodilatation was greater during the initial peak (raw, Δ0.35 APU mmHg(-1), P = 0.09; %CVC44, Δ18%, P = 0.05) and the plateau phase (raw, Δ0.55 APU mmHg(-1), P = 0.03; %CVC44, Δ26%, P = 0.02). The rate of rise in cutaneous blood flow during the initial peak was significantly greater during poikilocapnic hypoxia (P < 0.01). We observed a negative relationship between oxygen saturation in poikilocapnic hypoxia and the change in baseline (P = 0.06), initial peak (P = 0.01) and plateau phase of thermal hyperaemia (P = 0.01). Prolonged poikilocapnic hypoxia causes robust increases in CVC during both phases of thermal hyperaemia that are dependent on the oxygen saturation of the individual.


Assuntos
Câmaras de Exposição Atmosférica , Temperatura Alta , Hiperemia/metabolismo , Hipóxia/metabolismo , Pele/irrigação sanguínea , Pele/metabolismo , Adulto , Feminino , Humanos , Hiperemia/fisiopatologia , Hipóxia/fisiopatologia , Masculino , Método Simples-Cego , Fatores de Tempo , Vasodilatação/fisiologia , Adulto Jovem
18.
J Cachexia Sarcopenia Muscle ; 5(3): 199-207, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24710697

RESUMO

BACKGROUND: The anabolic response to progressive resistance exercise training (PRET) in haemodialysis patients is unclear. This pilot efficacy study aimed to determine whether high-intensity intradialytic PRET could reverse atrophy and consequently improve strength and physical function in haemodialysis patients. A second aim was to compare any anabolic response to that of healthy participants completing the same program. METHODS: In a single blind controlled study, 23 haemodialysis patients and 9 healthy individuals were randomly allocated to PRET or an attention control (SHAM) group. PRET completed high-intensity exercise leg extensions using novel equipment. SHAM completed low-intensity lower body stretching activities using ultra light resistance bands. Exercises were completed thrice weekly for 12 weeks, during dialysis in the haemodialysis patients. Outcomes included knee extensor muscle volume by magnetic resonance imaging, knee extensor strength by isometric dynamometer and lower body tests of physical function. Data were analysed by a per protocol method using between-group comparisons. RESULTS: PRET elicited a statistically and clinically significant anabolic response in haemodialysis patients (PRET-SHAM, mean difference [95 % CI]: 193[63 to 324] cm(3)) that was very similar to the response in healthy participants (PRET-SHAM, 169[-41 to 379] cm(3)). PRET increased strength in both haemodialysis patients and healthy participants. In contrast, PRET only enhanced lower body functional capacity in the healthy participants. CONCLUSIONS: Intradialytic PRET elicited a normal anabolic and strength response in haemodialysis patients. The lack of a change in functional capacity was surprising and warrants further investigation.

19.
Am J Nephrol ; 38(6): 475-82, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24296748

RESUMO

BACKGROUND/AIMS: According to mathematical modeling, intradialytic exercise of sufficient intensity and duration implemented in the second half of dialysis should be as efficacious as increasing dialysis time for dialysis adequacy. This assumption has not been tested in vivo. METHODS: In this controlled trial, 11 hemodialysis (HD) patients (mean (SD) age 56 (13) years) were recruited. Each patient completed three trial arms in a randomized order: routine care (CONT), increased HD time of 30 min (TIME), and intradialytic exercise (EXER), 60 min of cycling at 90% of the lactate threshold in the last 90 min of HD. The primary outcome was eKt/Vurea. Secondary outcomes included reduction and rebound ratios of urea, creatinine, phosphate and ß2-microglobulin. Outcomes were calculated from blood sampling collected pre-, post- and 30 min post-HD and confirmed with dialysate sampling. RESULTS: Exercise was not as efficacious as increased HD time for eKt/Vurea (EXER vs. CONT, mean change (95% CI): 0.03 (-0.05 to 0.12); TIME vs. CONT: 0.15 (0.05-0.26)). Exercise was less efficacious at improving reduction ratios of urea and creatinine. However, exercise was more efficacious than increased dialysis time for phosphate reduction ratio (EXER vs. CONT: 8.6% (0.5-16.7); TIME vs. CONT: 5.0% (-1.0 to 11.1)). CONCLUSION: This study utilized a rigorously controlled in vivo design to test mathematical models and assumptions regarding dialysis adequacy. Intradialytic exercise towards the end of HD cannot replace the prescription of increased HD time for dialysis adequacy, but may be an adjunctive therapy for serum phosphate control.


Assuntos
Terapia por Exercício/métodos , Falência Renal Crônica/terapia , Diálise Renal/métodos , Adulto , Idoso , Creatinina/metabolismo , Feminino , Humanos , Lactatos/metabolismo , Masculino , Pessoa de Meia-Idade , Modelos Teóricos , Fosfatos/sangue , Fosfatos/metabolismo , Fatores de Tempo , Ureia/metabolismo , Microglobulina beta-2/metabolismo
20.
Am J Physiol Renal Physiol ; 305(6): F813-20, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23825078

RESUMO

Unaccustomed strenuous physical exertion in hot environments can result in heat stroke and acute kidney injury (AKI). Both exercise-induced muscle damage and AKI are associated with the release of interleukin-6, but whether muscle damage causes AKI in the heat is unknown. We hypothesized that muscle-damaging exercise, before exercise in the heat, would increase kidney stress. Ten healthy euhydrated men underwent a randomized, crossover trial involving both a 60-min downhill muscle-damaging run (exercise-induced muscle damage; EIMD), and an exercise intensity-matched non-muscle-damaging flat run (CON), in random order separated by 2 wk. Both treatments were followed by heat stress elicited by a 40-min run at 33°C. Urine and blood were sampled at baseline, after treatment, and after subjects ran in the heat. By design, EIMD induced higher plasma creatine kinase and interleukin-6 than CON. EIMD elevated kidney injury biomarkers (e.g., urinary neutrophil gelatinase-associated lipocalin (NGAL) after a run in the heat: EIMD-CON, mean difference [95% CI]: 12 [5, 19] ng/ml) and reduced kidney function (e.g., plasma creatinine after a run in the heat: EIMD-CON, mean difference [95% CI]: 0.2 [0.1, 0.3] mg/dl), where CI is the confidence interval. Plasma interleukin-6 was positively correlated with plasma NGAL (r = 0.9, P = 0.001). Moreover, following EIMD, 5 of 10 participants met AKIN criteria for AKI. Thus for the first time we demonstrate that muscle-damaging exercise before running in the heat results in a greater inflammatory state and kidney stress compared with non-muscle-damaging exercise. Muscle damage should therefore be considered a risk factor for AKI when performing exercise in hot environments.


Assuntos
Injúria Renal Aguda/fisiopatologia , Biomarcadores/sangue , Exercício Físico , Transtornos de Estresse por Calor/etiologia , Temperatura Alta/efeitos adversos , Rim/fisiopatologia , Doenças Musculares/etiologia , Proteínas de Fase Aguda/urina , Adulto , Creatinina/sangue , Estudos Cross-Over , Humanos , Interleucina-6/urina , Lipocalina-2 , Lipocalinas/urina , Masculino , Doenças Musculares/patologia , Esforço Físico , Proteínas Proto-Oncogênicas/urina , Corrida/lesões , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...