Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
BMC Res Notes ; 16(1): 210, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37697348

RESUMO

OBJECTIVE: In routine clinical laboratories, severe acute respiratory syndrome coronavirus (SARS-CoV-2) infection is determined by reverse-transcription PCR (RT-PCR). In the COVID pandemic, a wide range of antigen detection tests were also in high demand. We investigated the correlation between SARS-CoV-2 NCap antigen and N gene concentration by analyzing samples from several INSTAND external quality assessment (EQA) schemes starting in March 2021. The absolute N gene concentration was measured using reverse transcriptase digital PCR (RT-dPCR) as reference value. Moreover, the performance of five commercial ELISA tests using an EQA inactivated SARS-CoV-2 sample at different concentrations was assessed on the basis of these reference values. RESULTS: Quantitative ELISA and RT-dPCR results showed a good correlation between SARS-CoV-2 NCap antigen and RNA concentration, but this correlation varies among SARS-CoV-2 isolates. A direct correlation between SARS-CoV-2 NCap antigen concentration and genome concentration should not be generally assumed. CONCLUSION: Further correlation studies between SARS-CoV-2 RNA and NCap antigen concentrations are needed, particularly in clinical samples and for emerging SARS-CoV-2 variants, to support the monitoring and improvement of antigen testing.


Assuntos
COVID-19 , RNA Viral , Humanos , RNA Viral/genética , SARS-CoV-2/genética , COVID-19/diagnóstico , Nucleocapsídeo
2.
J Diabetes Sci Technol ; 16(1): 161-167, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33218279

RESUMO

BACKGROUND: Each measurement is subject to measurement uncertainty (MU). Consequently, each measurement of plasma glucose concentration used for diagnosis and monitoring of diabetes mellitus (DM) is affected. Although concepts and methods of MU are well established in many fields of science and technology, they are presently only incompletely implemented by medical laboratories, neglecting MU of target values of internal quality control (IQC) materials. METHODS: An empirical and practical approach for the estimation of MU based on the analysis of routine IQC using control samples with assigned target values is presented. Its feasibility is demonstrated exemplarily by analyzing IQC data from one year obtained for glucose employing the hexokinase method with IQC of two different concentrations. RESULTS: Combined relative extended (k = 2) MU comprising bias, coefficient of variation (CV), and MU of the target values assigned to control materials were about 9% with a lower (~ 56 mg/dL; ~3.1 mmol/L) and 8% with a higher (~ 346 mg/dL; ~19.2 mmol/L) concentration sample, analyzing IQC of one year from three different devices. CONCLUSIONS: Estimation of MU in this study is quite reliable due to the large number of IQC data from one year. The MU of the target values of the commercial control material in this study was considerably larger than other MU contributions, ie, standard deviation and bias. In the future, the contribution of MU of commercial IQC should be addressed more carefully and technologies to measure glucose should be geared toward smaller MU possible, as needed, especially for glucose concentration measurements in diagnosis and management of DM.


Assuntos
Glicemia , Glicemia/análise , Humanos , Controle de Qualidade , Incerteza
3.
Methods ; 201: 34-40, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-33722693

RESUMO

Viral load monitoring in human immunodeficiency virus type 1 (HIV-1) infection is often performed using reverse transcription quantitative PCR (RT-qPCR) to observe response to treatment and identify the development of resistance. Traceability is achieved using a calibration hierarchy traceable to the International Unit (IU). IU values are determined using consensus agreement derived from estimations by different laboratories. Such a consensus approach is necessary due to the fact that there are currently no reference measurement procedures available that can independently assign a reference value to viral reference materials for molecular in vitro diagnostic tests. Digital PCR (dPCR) is a technique that has the potential to be used for this purpose. In this paper, we investigate the ability of reverse transcriptase dPCR (RT-dPCR) to quantify HIV-1 genomic RNA without calibration. Criteria investigated included the performance of HIV-1 RNA extraction steps, choice of reverse transcription approach and selection of target gene with assays performed in both single and duplex format. We developed a protocol which was subsequently applied by two independent laboratories as part of an external quality assurance (EQA) scheme for HIV-1 genome detection. Our findings suggest that RT-dPCR could be used as reference measurement procedure to aid the value assignment of HIV-1 reference materials to support routine calibration of HIV-1 viral load testing by RT-qPCR.


Assuntos
HIV-1 , Transcrição Reversa , HIV-1/genética , Humanos , RNA , RNA Viral/análise , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa
4.
Biomed Opt Express ; 11(11): 6570-6589, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33282509

RESUMO

A novel methodology for solving the inverse problem of diffuse optics for two-layered structures is proposed to retrieve the absolute quantities of optical absorption and reduced scattering coefficients of the layers simultaneously. A liquid phantom with various optical absorption properties in the deep layer is prepared and experimentally investigated using the space-enhanced time-domain method. Monte-Carlo simulations are applied to analyze the different measurements in time domain, space domain, and by the new methodology. The deviations of retrieved values from nominal values of both layers' optical properties are simultaneously reduced to a very low extent compared to the single-domain methods. The reliability and uncertainty of the retrieval performance are also considerably improved by the new methodology. It is observed in time-domain analyses that for the deep layer the retrieval of absorption coefficient is almost not affected by the scattering properties and this kind of "deep scattering neutrality" is investigated and overcome as well.

5.
Clin Chem Lab Med ; 58(8): 1314-1321, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32167924

RESUMO

Background Total haemoglobin (Hb) concentration in blood belongs to the most requested measurands, and the HiCN method (hemiglobincyanide) is accepted as a reference. Although the reaction principle is clearly characterised, measurement conditions and settings are not consistently defined, some of them influencing the results. An improvement of standardisation is the object. Methods After method optimization, measurement results between different calibration laboratories (CL) were compared with each other and also with results of the National Metrology Institute of Germany (PTB), with target values of certified reference material, within the RELA scheme, and to >1500 results from routine laboratories. Results Overall deviations between three CLs were ≤0.5% (n = 24 samples) in a measurement range of 20 g/L to 300 g/L. A CV of 0.4% was determined in pooled blood (1 year long-term imprecision, 99.0%-101.1% recovery of the mean). For selected measurements (n = 4 samples) the PTB participated without significant differences to three CLs, and no significant differences were observed comparing CLs to certified values of reference materials. The expanded measurement uncertainty (probability 95%) was estimated as 1.1%. Conclusions A reference measuring system, comprising measuring instruments and other devices, including reagents and supply, to generate reference measurement values for total Hb concentration of high accuracy and low measurement uncertainty is presented. Measurement parameters are investigated and defined. The reference measuring system is ready to offer service to EQA providers and to the IVD industry for certifying control materials or calibrators.


Assuntos
Hemoglobinas/análise , Hemoglobinas/normas , Humanos , Laboratórios , Valores de Referência
6.
Opt Express ; 27(19): 26415-26431, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31674524

RESUMO

A multivariate method integrating time and space resolved techniques of near-infrared spectroscopy is proposed for simultaneously retrieving the absolute quantities of optical absorption and scattering properties in tissues. The time-domain feature of photon migration is advantageously constrained and regularized by its spatially-resolved amplitude patterns in the inverse procedure. Measurements of tissue-mimicking phantoms with various optical properties are analyzed with Monte-Carlo simulations to validate the method performance. The uniqueness, stability, and uncertainty of the method are discussed.

7.
Biomed Tech (Berl) ; 63(5): 511-518, 2018 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-29494335

RESUMO

Optical imaging of biological tissue in vivo at multiple wavelengths in the near-infrared (NIR) spectral range can be achieved with picosecond time resolution at high sensitivity by time-correlated single photon counting. Measuring and analyzing the distribution of times of flight of photons randomly propagated through the tissue has been applied for diffuse optical imaging and spectroscopy, e.g. of human breast tissue and of the brain. In this article, we review the main features and the potential of NIR multispectral imaging with picosecond time resolution and illustrate them by exemplar applications in these fields. In particular, we discuss the experimental methods developed at the Physikalisch-Technische Bundesanstalt (PTB) to record optical mammograms and to quantify the absorption and scattering properties from which hemoglobin concentration and oxygen saturation of healthy and diseased breast tissue have been derived by combining picosecond time-domain and spectral information. Furthermore, optical images of functional brain activation were obtained by a non-contact scanning device exploiting the null source-detector separation approach which takes advantage of the picosecond time resolution as well. The recorded time traces of changes in the oxy- and deoxyhemoglobin concentrations during a motor stimulation investigation show a localized response from the brain.


Assuntos
Encéfalo/diagnóstico por imagem , Neoplasias da Mama/diagnóstico por imagem , Hemoglobinas/química , Feminino , Humanos , Mamografia , Espectroscopia de Luz Próxima ao Infravermelho
8.
Rev Sci Instrum ; 87(3): 035118, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27036830

RESUMO

We present a system for non-contact time-resolved diffuse reflectance imaging, based on small source-detector distance and high dynamic range measurements utilizing a fast-gated single-photon avalanche diode. The system is suitable for imaging of diffusive media without any contact with the sample and with a spatial resolution of about 1 cm at 1 cm depth. In order to objectively assess its performances, we adopted two standardized protocols developed for time-domain brain imagers. The related tests included the recording of the instrument response function of the setup and the responsivity of its detection system. Moreover, by using liquid turbid phantoms with absorbing inclusions, depth-dependent contrast and contrast-to-noise ratio as well as lateral spatial resolution were measured. To illustrate the potentialities of the novel approach, the characteristics of the non-contact system are discussed and compared to those of a fiber-based brain imager.


Assuntos
Imagem Óptica/instrumentação , Fótons , Encéfalo/fisiologia , Eletrodos , Lasers , Fibras Ópticas , Imagens de Fantasmas , Fatores de Tempo
9.
J Biomed Opt ; 20(11): 115001, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26524677

RESUMO

In this work, we have tested the optimal estimation (OE) algorithm for the reconstruction of the optical properties of a two-layered liquid tissue phantom from time-resolved single-distance measurements. The OE allows a priori information, in particular on the range of variation of fit parameters, to be included. The purpose of the present investigations was to compare the performance of OE with the Levenberg­Marquardt method for a geometry and real experimental conditions typically used to reconstruct the optical properties of biological tissues such as muscle and brain. The absorption coefficient of the layers was varied in a range of values typical for biological tissues. The reconstructions performed demonstrate the substantial improvements achievable with the OE provided a priori information is available. We note the extreme reliability, robustness, and accuracy of the retrieved absorption coefficient of the second layer obtained with the OE that was found for up to six fit parameters, with an error in the retrieved values of less than 10%. A priori information on fit parameters and fixed forward model parameters clearly improves robustness and accuracy of the inversion procedure.


Assuntos
Luz , Modelos Biológicos , Nefelometria e Turbidimetria/métodos , Refratometria/métodos , Espalhamento de Radiação , Tomografia Óptica/métodos , Algoritmos , Animais , Simulação por Computador , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Tomografia Óptica/instrumentação
10.
Biomed Opt Express ; 6(2): 309-23, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25780726

RESUMO

We hypothesize that combining quantitative near-infrared spectroscopy (NIRS) with established invasive techniques will enable advanced insights into renal hemodynamics and oxygenation in small animal models. We developed a NIRS technique to monitor absolute values of oxygenated and deoxygenated hemoglobin and of oxygen saturation of hemoglobin within the renal cortex of rats. This NIRS technique was combined with invasive methods to simultaneously record renal tissue oxygen tension and perfusion. The results of test procedures including occlusions of the aorta or the renal vein, hyperoxia, hypoxia, and hypercapnia demonstrated that the combined approach, by providing different but complementary information, enables a more comprehensive characterization of renal hemodynamics and oxygenation.

11.
J Biomed Opt ; 20(5): 051025, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25585232

RESUMO

We present a compact fluorescence imaging system developed for real-time sentinel lymph node mapping. The device uses two near-infrared wavelengths to record fluorescence and anatomical images with a single charge-coupled device camera. Experiments on lymph node and tissue phantoms confirmed that the amount of dye in superficial lymph nodes can be better estimated due to the absorption correction procedure integrated in our device. Because of the camera head's small size and low weight, all accessible regions of tissue can be reached without the need for any adjustments.


Assuntos
Neoplasias da Mama/patologia , Linfonodos/patologia , Imagem Óptica/instrumentação , Imagem Óptica/métodos , Biópsia de Linfonodo Sentinela/instrumentação , Biópsia de Linfonodo Sentinela/métodos , Neoplasias Cutâneas/patologia , Gráficos por Computador , Simulação por Computador , Meios de Contraste/química , Difusão , Desenho de Equipamento , Feminino , Humanos , Verde de Indocianina/química , Imagens de Fantasmas , Espectroscopia de Luz Próxima ao Infravermelho , Interface Usuário-Computador , Água/química
12.
J Biomed Opt ; 19(8): 086010, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25121479

RESUMO

Performance assessment of instruments devised for clinical applications is of key importance for validation and quality assurance. Two new protocols were developed and applied to facilitate the design and optimization of instruments for time-domain optical brain imaging within the European project nEUROPt. Here, we present the "Basic Instrumental Performance" protocol for direct measurement of relevant characteristics. Two tests are discussed in detail. First, the responsivity of the detection system is a measure of the overall efficiency to detect light emerging from tissue. For the related test, dedicated solid slab phantoms were developed and quantitatively spectrally characterized to provide sources of known radiance with nearly Lambertian angular characteristics. The responsivity of four time-domain optical brain imagers was found to be of the order of 0.1 m² sr. The relevance of the responsivity measure is demonstrated by simulations of diffuse reflectance as a function of source-detector separation and optical properties. Second, the temporal instrument response function (IRF) is a critically important factor in determining the performance of time-domain systems. Measurements of the IRF for various instruments were combined with simulations to illustrate the impact of the width and shape of the IRF on contrast for a deep absorption change mimicking brain activation.


Assuntos
Algoritmos , Encéfalo/citologia , Análise de Falha de Equipamento/métodos , Interpretação de Imagem Assistida por Computador/métodos , Microscopia/instrumentação , Tomografia Óptica/instrumentação , Animais , Desenho de Equipamento , Europa (Continente) , Camundongos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
13.
J Biomed Opt ; 19(8): 086012, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25121480

RESUMO

The nEUROPt protocol is one of two new protocols developed within the European project nEUROPt to characterize the performances of time-domain systems for optical imaging of the brain. It was applied in joint measurement campaigns to compare the various instruments and to assess the impact of technical improvements. This protocol addresses the characteristic of optical brain imaging to detect, localize, and quantify absorption changes in the brain. It was implemented with two types of inhomogeneous liquid phantoms based on Intralipid and India ink with well-defined optical properties. First, small black inclusions were used to mimic localized changes of the absorption coefficient. The position of the inclusions was varied in depth and lateral direction to investigate contrast and spatial resolution. Second, two-layered liquid phantoms with variable absorption coefficients were employed to study the quantification of layer-wide changes and, in particular, to determine depth selectivity, i.e., the ratio of sensitivities for deep and superficial absorption changes. We introduce the tests of the nEUROPt protocol and present examples of results obtained with different instruments and methods of data analysis. This protocol could be a useful step toward performance tests for future standards in diffuse optical imaging.


Assuntos
Algoritmos , Encéfalo/citologia , Análise de Falha de Equipamento/métodos , Interpretação de Imagem Assistida por Computador/métodos , Microscopia/instrumentação , Tomografia Óptica/instrumentação , Desenho de Equipamento , Europa (Continente) , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
14.
J Biomed Opt ; 19(7): 076011, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25023415

RESUMO

We present the experimental implementation and validation of a phantom for diffuse optical imaging based on totally absorbing objects for which, in the previous paper [J. Biomed. Opt.18(6), 066014, (2013)], we have provided the basic theory. Totally absorbing objects have been manufactured as black polyvinyl chloride (PVC) cylinders and the phantom is a water dilution of intralipid-20% as the diffusive medium and India ink as the absorber, filled into a black scattering cell made of PVC. By means of time-domain measurements and of Monte Carlo simulations, we have shown the reliability, the accuracy, and the robustness of such a phantom in mimicking typical absorbing perturbations of diffuse optical imaging. In particular, we show that such a phantom can be used to generate any absorption perturbation by changing the volume and position of the totally absorbing inclusion.


Assuntos
Imagem Óptica/instrumentação , Imagens de Fantasmas , Modelos Biológicos , Método de Monte Carlo
15.
Biomed Opt Express ; 5(5): 1465-82, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24877009

RESUMO

In functional near-infrared spectroscopy (fNIRS) superficial hemodynamics can mask optical signals related to brain activity. We present a method to separate superficial and cerebral absorption changes based on the analysis of changes in moments of time-of-flight distributions and a two-layered model. The related sensitivity factors were calculated from individual optical properties. The method was validated on a two-layer liquid phantom. Absorption changes in the lower layer were retrieved with an accuracy better than 20%. The method was successfully applied to in vivo data and compared to the reconstruction of homogeneous absorption changes.

16.
J Biomed Opt ; 18(6): 066014, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23778947

RESUMO

The design of inhomogeneous phantoms for diffuse optical imaging purposes using totally absorbing objects embedded in a diffusive medium is proposed and validated. From time-resolved and continuous-wave Monte Carlo simulations, it is shown that a given or desired perturbation strength caused by a realistic absorbing inhomogeneity of a certain absorption and volume can be approximately mimicked by a small totally absorbing object of a so-called equivalent black volume (equivalence relation). This concept can be useful in two ways. First, it can be exploited to design realistic inhomogeneous phantoms with different perturbation strengths simply using a set of black objects with different volumes. Further, it permits one to grade physiological or pathological changes on a reproducible scale of perturbation strengths given as equivalent black volumes, thus facilitating the performance assessment of clinical instruments. A set of plots and interpolating functions to derive the equivalent black volume corresponding to a given absorption change is provided. The application of the equivalent black volume concept for grading different optical perturbations is demonstrated for some examples.


Assuntos
Diagnóstico por Imagem/métodos , Imagem Óptica/métodos , Óptica e Fotônica/métodos , Imagens de Fantasmas , Absorção , Algoritmos , Difusão , Humanos , Luz , Método de Monte Carlo , Fótons , Espalhamento de Radiação , Fatores de Tempo
17.
J Biomed Opt ; 17(10): 106008, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23224007

RESUMO

Using 15 rats with collagen-induced arthritis (30 joints) and 7 control rats (14 joints), we correlated the intensity of near-infrared fluorescence (NIRF) of the nonspecific dye tetrasulfocyanine (TSC) with magnetic resonance imaging (MRI), histopathology, and clinical score. Fluorescence images were obtained in reflection geometry using a NIRF camera system. Normalized fluorescence intensity (INF) was determined after intravenous dye administration on different time points up to 120 min. Contrast-enhanced MRI using gadodiamide was performed after NIRF imaging. Analyses were performed in a blinded fashion. Histopathological and clinical scores were determined for each ankle joint. INF of moderate and high-grade arthritic joints were significantly higher (p<0.005) than the values of control and low-grade arthritic joints between 5 and 30 min after TSC-injection. This result correlated well with post-contrast MRI signal intensities at about 5 min after gadodiamide administration. Furthermore, INF and signal increase on contrast-enhanced MRI showed high correlation with clinical and histopathological scores. Sensitivities and specificities for detection of moderate and high-grade arthritic joints were slightly lower for NIRF imaging (89%/81%) than for MRI (100%/91%). NIRF imaging using TSC, which is characterized by slower plasma clearance compared to indocyanine green (ICG), has the potential to improve monitoring of inflamed joints.


Assuntos
Artrite Experimental/patologia , Carbocianinas/química , Meios de Contraste/química , Corantes Fluorescentes/química , Gadolínio/química , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Animais , Artrite Experimental/metabolismo , Carbocianinas/farmacocinética , Meios de Contraste/farmacocinética , Feminino , Corantes Fluorescentes/farmacocinética , Gadolínio/farmacocinética , Histocitoquímica , Articulações/anatomia & histologia , Articulações/química , Articulações/metabolismo , Articulações/patologia , Imagem Óptica , Ratos
18.
J Biomed Opt ; 17(5): 057003, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22612142

RESUMO

Non-invasive detection of fluorescence from the optical tracer indocyanine green is feasible in the adult human brain when employing a time-domain technique with picosecond resolution. A fluorescence-based assessment may offer higher signal-to-noise ratio when compared to bolus tracking relying on changes in time-resolved diffuse reflectance. The essential challenge is to discriminate the fluorescence originating from the brain from contamination by extracerebral fluorescence and hence to reconstruct the bolus kinetics; however, a method to reliably perform the necessary separation is missing. We present a novel approach for the decomposition of the fluorescence contributions from the two tissue compartments. The corresponding sensitivity functions pertaining to the brain and to the extracerebral compartment are directly derived from the in-vivo measurement. This is achieved by assuming that during the initial and the late phase of bolus transit the fluorescence signal originates largely from one of the compartments. Solving the system of linear equations allows one to approximate time courses of a bolus for each compartment. We applied this method to repetitive measurements on two healthy subjects with an overall 34 boluses. A reconstruction of the bolus kinetics was possible in 62% of all cases.


Assuntos
Algoritmos , Encéfalo/metabolismo , Verde de Indocianina/farmacocinética , Modelos Biológicos , Couro Cabeludo/metabolismo , Espectrometria de Fluorescência/métodos , Adulto , Simulação por Computador , Humanos , Distribuição Tecidual
19.
Anal Chem ; 84(9): 3889-98, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22376085

RESUMO

The development of fluorescence applications in the life and material sciences has proceeded largely without sufficient concern for the measurement uncertainties related to the characterization of fluorescence instruments. In this first part of a two-part series on the state-of-the-art comparability of corrected emission spectra, four National Metrology Institutes active in high-precision steady-state fluorometry performed a first comparison of fluorescence measurement capabilities by evaluating physical transfer standard (PTS)-based and reference material (RM)-based calibration methods. To identify achievable comparability and sources of error in instrument calibration, the emission spectra of three test dyes in the wavelength region from 300 to 770 nm were corrected and compared using both calibration methods. The results, obtained for typical spectrofluorometric (0°/90° transmitting) and colorimetric (45°/0° front-face) measurement geometries, demonstrated a comparability of corrected emission spectra within a relative standard uncertainty of 4.2% for PTS- and 2.4% for RM-based spectral correction when measurements and calibrations were performed under identical conditions. Moreover, the emission spectra of RMs F001 to F005, certified by BAM, Federal Institute for Materials Research and Testing, were confirmed. These RMs were subsequently used for the assessment of the comparability of RM-based corrected emission spectra of field laboratories using common commercial spectrofluorometers and routine measurement conditions in part 2 of this series (subsequent paper in this issue).

20.
Anal Chem ; 84(9): 3899-907, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22376144

RESUMO

In the second part of this two-part series on the state-of-the-art comparability of corrected emission spectra, we have extended this assessment to the broader community of fluorescence spectroscopists by involving 12 field laboratories that were randomly selected on the basis of their fluorescence measuring equipment. These laboratories performed a reference material (RM)-based fluorometer calibration with commercially available spectral fluorescence standards following a standard operating procedure that involved routine measurement conditions and the data evaluation software LINKCORR developed and provided by the Federal Institute for Materials Research and Testing (BAM). This instrument-specific emission correction curve was subsequently used for the determination of the corrected emission spectra of three test dyes, X, QS, and Y, revealing an average accuracy of 6.8% for the corrected emission spectra. This compares well with the relative standard uncertainties of 4.2% for physical standard-based spectral corrections demonstrated in the first part of this study (previous paper in this issue) involving an international group of four expert laboratories. The excellent comparability of the measurements of the field laboratories also demonstrates the effectiveness of RM-based correction procedures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...