Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 23(1): 91, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36782130

RESUMO

BACKGROUND: Mitochondria are organelles within eukaryotic cells that are central to the metabolic processes of cellular respiration and ATP production. However, the evolution of mitochondrial genomes (mitogenomes) in plants is virtually unknown compared to animal mitogenomes or plant plastids, due to complex structural variation and long stretches of repetitive DNA making accurate genome assembly more challenging. Comparing the structural and sequence differences of organellar genomes within and between sorghum species is an essential step in understanding evolutionary processes such as organellar sequence transfer to the nuclear genome as well as improving agronomic traits in sorghum related to cellular metabolism. RESULTS: Here, we assembled seven sorghum mitochondrial and plastid genomes and resolved reticulated mitogenome structures with multilinked relationships that could be grouped into three structural conformations that differ in the content of repeats and genes by contig. The grouping of these mitogenome structural types reflects the two domestication events for sorghum in east and west Africa. CONCLUSIONS: We report seven mitogenomes of sorghum from different cultivars and wild sources. The assembly method used here will be helpful in resolving complex genomic structures in other plant species. Our findings give new insights into the structure of sorghum mitogenomes that provides an important foundation for future research into the improvement of sorghum traits related to cellular respiration, cytonuclear incompatibly, and disease resistance.


Assuntos
Genoma Mitocondrial , Sorghum , Genoma Mitocondrial/genética , Sorghum/genética , Filogenia , Domesticação , Plantas/genética , Núcleo Celular , Evolução Molecular , Genoma de Planta/genética
2.
J Exp Bot ; 73(19): 6711-6726, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-35961690

RESUMO

The stay-green trait is recognized as a key drought adaptation mechanism in cereals worldwide. Stay-green sorghum plants exhibit delayed senescence of leaves and stems, leading to prolonged growth, a reduced risk of lodging, and higher grain yield under end-of-season drought stress. More than 45 quantitative trait loci (QTL) associated with stay-green have been identified, including two major QTL (Stg1 and Stg2). However, the contributing genes that regulate functional stay-green are not known. Here we show that the PIN FORMED family of auxin efflux carrier genes induce some of the causal mechanisms driving the stay-green phenotype in sorghum, with SbPIN4 and SbPIN2 located in Stg1 and Stg2, respectively. We found that nine of 11 sorghum PIN genes aligned with known stay-green QTL. In transgenic studies, we demonstrated that PIN genes located within the Stg1 (SbPIN4), Stg2 (SbPIN2), and Stg3b (SbPIN1) QTL regions acted pleiotropically to modulate canopy development, root architecture, and panicle growth in sorghum, with SbPIN1, SbPIN2, and SbPIN4 differentially expressed in various organs relative to the non-stay-green control. The emergent consequence of such modifications in canopy and root architecture is a stay-green phenotype. Crop simulation modelling shows that the SbPIN2 phenotype can increase grain yield under drought.


Assuntos
Secas , Sorghum , Locos de Características Quantitativas/genética , Sorghum/fisiologia , Fenótipo , Adaptação Fisiológica/genética , Grão Comestível/genética
3.
Plant J ; 108(1): 231-243, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34309934

RESUMO

Variation in grain size, a major determinant of grain yield and quality in cereal crops, is determined by both the plant's genetic potential and the available assimilate to fill the grain in the absence of stress. This study investigated grain size variation in response to variation in assimilate supply in sorghum using a diversity panel (n = 837) and a backcross-nested association mapping population (n = 1421) across four experiments. To explore the effects of genetic potential and assimilate availability on grain size, the top half of selected panicles was removed at anthesis. Results showed substantial variation in five grain size parameters with high heritability. Artificial reduction in grain number resulted in a general increase in grain weight, with the extent of the increase varying across genotypes. Genome-wide association studies identified 44 grain size quantitative trait locus (QTL) that were likely to act on assimilate availability and 50 QTL that were likely to act on genetic potential. This finding was further supported by functional enrichment analysis and co-location analysis with known grain number QTL and candidate genes. RNA interference and overexpression experiments were conducted to validate the function of one of the identified gene, SbDEP1, showing that SbDEP1 positively regulates grain number and negatively regulates grain size by controlling primary branching in sorghum. Haplotype analysis of SbDEP1 suggested a possible role in racial differentiation. The enhanced understanding of grain size variation in relation to assimilate availability presented in this study will benefit sorghum improvement and have implications for other cereal crops.


Assuntos
Locos de Características Quantitativas/genética , Sorghum/genética , Produtos Agrícolas , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Estudo de Associação Genômica Ampla , Genótipo , Haplótipos , Fenótipo , Sementes/genética , Sementes/crescimento & desenvolvimento , Sorghum/crescimento & desenvolvimento
4.
Mol Plant ; 13(9): 1247-1249, 2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32745560
5.
Theor Appl Genet ; 133(3): 1009-1018, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31907563

RESUMO

KEY MESSAGE: Multi-environment models using marker-based kinship information for both additive and dominance effects can accurately predict hybrid performance in different environments. Sorghum is an important hybrid crop that is grown extensively in many subtropical and tropical regions including Northern NSW and Queensland in Australia. The highly varying weather patterns in the Australian summer months mean that sorghum hybrids exhibit a great deal of variation in yield between locations. To ultimately enable prediction of the outcome of crossing parental lines, both additive effects on yield performance and dominance interaction effects need to be characterised. This paper demonstrates that fitting a linear mixed model that includes both types of effects calculated using genetic markers in relationship matrices improves predictions. Genotype by environment interactions was investigated by comparing FA1 (single-factor analytic) and FA2 (two-factor analytic) structures. The G×E causes a change in hybrid rankings between trials with a difference of up to 25% of the hybrids in the top 10% of each trial. The prediction accuracies increased with the addition of the dominance term (over and above that achieved with an additive effect alone) by an average of 15% and a maximum of 60%. The percentage of dominance of the total genetic variance varied between trials with the trials with higher broad-sense heritability having the greater percentage of dominance. The inclusion of dominance in the factor analytic models improves the accuracy of the additive effects. Breeders selecting high yielding parents for crossing need to be aware of effects due to environment and dominance.


Assuntos
Melhoramento Vegetal , Sorghum/genética , Austrália , Clima , Epistasia Genética , Genes Dominantes , Estudos de Associação Genética , Marcadores Genéticos , Variação Genética , Genômica , Genótipo , Modelos Genéticos , Linhagem , Fenótipo , Polimorfismo de Nucleotídeo Único , Seleção Genética , Sorghum/crescimento & desenvolvimento
6.
Plant Biotechnol J ; 18(4): 1093-1105, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31659829

RESUMO

Grain size is a key yield component of cereal crops and a major quality attribute. It is determined by a genotype's genetic potential and its capacity to fill the grains. This study aims to dissect the genetic architecture of grain size in sorghum. An integrated genome-wide association study (GWAS) was conducted using a diversity panel (n = 837) and a BC-NAM population (n = 1421). To isolate genetic effects associated with genetic potential of grain size, rather than the genotype's capacity to fill the grains, a treatment of removing half of the panicle was imposed during flowering. Extensive and highly heritable variation in grain size was observed in both populations in 5 field trials, and 81 grain size QTL were identified in subsequent GWAS. These QTL were enriched for orthologues of known grain size genes in rice and maize, and had significant overlap with SNPs associated with grain size in rice and maize, supporting common genetic control of this trait among cereals. Grain size genes with opposite effect on grain number were less likely to overlap with the grain size QTL from this study, indicating the treatment facilitated identification of genetic regions related to the genetic potential of grain size. These results enhance understanding of the genetic architecture of grain size in cereal, and pave the way for exploration of underlying molecular mechanisms and manipulation of this trait in breeding practices.


Assuntos
Estudos de Associação Genética , Sementes/crescimento & desenvolvimento , Sorghum/genética , Fenótipo , Locos de Características Quantitativas , Sorghum/crescimento & desenvolvimento
7.
Trends Plant Sci ; 24(12): 1072-1074, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31648939

RESUMO

The inadequacy of a single reference genome to capture the full landscape of genetic diversity within a species constrains exploration of genetic variation for crop improvement. A recent study by Yang et al. has demonstrated the value of multiple reference-quality genomes in capturing structural variants and guiding biological discovery.


Assuntos
Genoma de Planta , Zea mays , Produtos Agrícolas/genética , Variação Genética , Genômica
8.
Front Plant Sci ; 10: 997, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31417601

RESUMO

Grain yield and stay-green drought adaptation trait are important targets of selection in grain sorghum breeding for broad adaptation to a range of environments. Genomic prediction for these traits may be enhanced by joint multi-trait analysis. The objectives of this study were to assess the capacity of multi-trait models to improve genomic prediction of parental breeding values for grain yield and stay-green in sorghum by using information from correlated auxiliary traits, and to determine the combinations of traits that optimize predictive results in specific scenarios. The dataset included phenotypic performance of 2645 testcross hybrids across 26 environments as well as genomic and pedigree information on their female parental lines. The traits considered were grain yield (GY), stay-green (SG), plant height (PH), and flowering time (FT). We evaluated the improvement in predictive performance of multi-trait G-BLUP models relative to single-trait G-BLUP. The use of a blended kinship matrix exploiting pedigree and genomic information was also explored to optimize multi-trait predictions. Predictive ability for GY increased up to 16% when PH information on the training population was exploited through multi-trait genomic analysis. For SG prediction, full advantage from multi-trait G-BLUP was obtained only when GY information was also available on the predicted lines per se, with predictive ability improvements of up to 19%. Predictive ability, unbiasedness and accuracy of predictions from conventional multi-trait G-BLUP were further optimized by using a combined pedigree-genomic relationship matrix. Results of this study suggest that multi-trait genomic evaluation combining routinely measured traits may be used to improve prediction of crop productivity and drought adaptability in grain sorghum.

9.
Theor Appl Genet ; 132(7): 2055-2067, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30968160

RESUMO

KEY MESSAGE: The use of a kinship matrix integrating pedigree- and marker-based relationships optimized the performance of genomic prediction in sorghum, especially for traits of lower heritability. Selection based on genome-wide markers has become an active breeding strategy in crops. Genomic prediction models can make use of pedigree information to account for the residual polygenic effects not captured by markers. Our aim was to evaluate the impact of using pedigree and genomic information on prediction quality of breeding values for different traits in sorghum. We explored BLUP models that use weighted combinations of pedigree and genomic relationship matrices. The optimal weighting factor was empirically determined in order to maximize predictive ability after evaluating a range of candidate weights. The phenotypic data consisted of testcross evaluations of sorghum parental lines across multiple environments. All lines were genotyped, and full pedigree information was available. The performance of the best predictive combined matrix was compared to that of models fitting the component matrices independently. Model performance was assessed using cross-validation technique. Fitting a combined pedigree-genomic matrix with the optimal weight always yielded the largest increases in predictive ability and the largest reductions in prediction bias relative to the simple G-BLUP. However, the weight that optimized prediction varied across traits. The benefits of including pedigree information in the genomic model were more relevant for traits with lower heritability, such as grain yield and stay-green. Our results suggest that the combination of pedigree and genomic relatedness can be used to optimize predictions of complex traits in crops when the additive variation is not fully explained by markers.


Assuntos
Genômica/métodos , Modelos Genéticos , Linhagem , Melhoramento Vegetal , Sorghum/genética , Genótipo , Fenótipo
11.
Front Plant Sci ; 8: 1237, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28769949

RESUMO

Seed size and seed weight are major quality attributes and important determinants of yield that have been strongly selected for during crop domestication. Limited information is available about the genetic control and genes associated with seed size and weight in sorghum. This study identified sorghum orthologs of genes with proven effects on seed size and weight in other plant species and searched for evidence of selection during domestication by utilizing resequencing data from a diversity panel. In total, 114 seed size candidate genes were identified in sorghum, 63 of which exhibited signals of purifying selection during domestication. A significant number of these genes also had domestication signatures in maize and rice, consistent with the parallel domestication of seed size in cereals. Seed size candidate genes that exhibited differentially high expression levels in seed were also found more likely to be under selection during domestication, supporting the hypothesis that modification to seed size during domestication preferentially targeted genes for intrinsic seed size rather than genes associated with physiological factors involved in the carbohydrate supply and transport. Our results provide improved understanding of the complex genetic control of seed size and weight and the impact of domestication on these genes.

12.
Front Plant Sci ; 8: 2102, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29375590

RESUMO

Mungbean [Vigna radiata (L.) R. Wilczek var. radiata] is an important grain legume globally, providing a high-quality plant protein source largely produced and consumed in South and East Asia. This study aimed to characterize a mungbean diversity panel consisting of 466 cultivated accessions and demonstrate its utility by conducting a pilot genome-wide association study of seed coat color. In addition 16 wild accessions were genotyped for comparison and in total over 22,000 polymorphic genome-wide SNPs were identified and used to analyze the genetic diversity, population structure, linkage disequilibrium (LD) of mungbean. Polymorphism was lower in the cultivated accessions in comparison to the wild accessions, with average polymorphism information content values 0.174, versus 0.305 in wild mungbean. LD decayed in ∼100 kb in cultivated lines, a distance higher than the linkage decay of ∼60 kb estimated in wild mungbean. Four distinct subgroups were identified within the cultivated lines, which broadly corresponded to geographic origin and seed characteristics. In a pilot genome-wide association mapping study of seed coat color, five genomic regions associated were identified, two of which were close to seed coat color genes in other species. This mungbean diversity panel constitutes a valuable resource for genetic dissection of important agronomical traits to accelerate mungbean breeding.

13.
Front Plant Sci ; 7: 1544, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27826302

RESUMO

Nitrogen (N) fertilizers are a major agricultural input where more than 100 million tons are supplied annually. Cereals are particularly inefficient at soil N uptake, where the unrecovered nitrogen causes serious environmental damage. Sorghum bicolor (sorghum) is an important cereal crop, particularly in resource-poor semi-arid regions, and is known to have a high NUE in comparison to other major cereals under limited N conditions. This study provides the first assessment of genetic diversity and signatures of selection across 230 fully sequenced genes putatively involved in the uptake and utilization of N from a diverse panel of sorghum lines. This comprehensive analysis reveals an overall reduction in diversity as a result of domestication and a total of 128 genes displaying signatures of purifying selection, thereby revealing possible gene targets to improve NUE in sorghum and cereals alike. A number of key genes appear to have been involved in selective sweeps, reducing their sequence diversity. The ammonium transporter (AMT) genes generally had low allelic diversity, whereas a substantial number of nitrate/peptide transporter 1 (NRT1/PTR) genes had higher nucleotide diversity in domesticated germplasm. Interestingly, members of the distinct race Guinea margaritiferum contained a number of unique alleles, and along with the wild sorghum species, represent a rich resource of new variation for plant improvement of NUE in sorghum.

14.
Plant Biotechnol J ; 14(12): 2240-2253, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27155090

RESUMO

Next-generation sequencing of complete genomes has given researchers unprecedented levels of information to study the multifaceted evolutionary changes that have shaped elite plant germplasm. In conjunction with population genetic analytical techniques and detailed online databases, we can more accurately capture the effects of domestication on entire biological pathways of agronomic importance. In this study, we explore the genetic diversity and signatures of selection in all predicted gene models of the storage starch synthesis pathway of Sorghum bicolor, utilizing a diversity panel containing lines categorized as either 'Landraces' or 'Wild and Weedy' genotypes. Amongst a total of 114 genes involved in starch synthesis, 71 had at least a single signal of purifying selection and 62 a signal of balancing selection and others a mix of both. This included key genes such as STARCH PHOSPHORYLASE 2 (SbPHO2, under balancing selection), PULLULANASE (SbPUL, under balancing selection) and ADP-glucose pyrophosphorylases (SHRUNKEN2, SbSH2 under purifying selection). Effectively, many genes within the primary starch synthesis pathway had a clear reduction in nucleotide diversity between the Landraces and wild and weedy lines indicating that the ancestral effects of domestication are still clearly identifiable. There was evidence of the positional rate variation within the well-characterized primary starch synthesis pathway of sorghum, particularly in the Landraces, whereby low evolutionary rates upstream and high rates downstream in the metabolic pathway were expected. This observation did not extend to the wild and weedy lines or the minor starch synthesis pathways.


Assuntos
Genoma de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sorghum/genética , Sorghum/metabolismo , Amido/metabolismo
16.
Biotechnol Biofuels ; 9: 6, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26744602

RESUMO

BACKGROUND: Sorghum (Sorghum bicolor) is one of the most important cereal crops globally and a potential energy plant for biofuel production. In order to explore genetic gain for a range of important quantitative traits, such as drought and heat tolerance, grain yield, stem sugar accumulation, and biomass production, via the use of molecular breeding and genomic selection strategies, knowledge of the available genetic variation and the underlying sequence polymorphisms, is required. RESULTS: Based on the assembled and annotated genome sequences of Sorghum bicolor (v2.1) and the recently published sorghum re-sequencing data, ~62.9 M SNPs were identified among 48 sorghum accessions and included in a newly developed sorghum genome SNP database SorGSD (http://sorgsd.big.ac.cn). The diverse panel of 48 sorghum lines can be classified into four groups, improved varieties, landraces, wild and weedy sorghums, and a wild relative Sorghum propinquum. SorGSD has a web-based query interface to search or browse SNPs from individual accessions, or to compare SNPs among several lines. The query results can be visualized as text format in tables, or rendered as graphics in a genome browser. Users may find useful annotation from query results including type of SNPs such as synonymous or non-synonymous SNPs, start, stop of splice variants, chromosome locations, and links to the annotation on Phytozome (www.phytozome.net) sorghum genome database. In addition, general information related to sorghum research such as online sorghum resources and literature references can also be found on the website. All the SNP data and annotations can be freely download from the website. CONCLUSIONS: SorGSD is a comprehensive web-portal providing a database of large-scale genome variation across all racial types of cultivated sorghum and wild relatives. It can serve as a bioinformatics platform for a range of genomics and molecular breeding activities for sorghum and for other C4 grasses.

17.
Theor Appl Genet ; 128(9): 1813-25, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26071275

RESUMO

We detected seven QTLs for 100-grain weight in sorghum using an F 2 population, and delimited qGW1 to a 101-kb region on the short arm of chromosome 1, which contained 13 putative genes. Sorghum is one of the most important cereal crops. Breeding high-yielding sorghum varieties will have a profound impact on global food security. Grain weight is an important component of grain yield. It is a quantitative trait controlled by multiple quantitative trait loci (QTLs); however, the genetic basis of grain weight in sorghum is not well understood. In the present study, using an F2 population derived from a cross between the grain sorghum variety SA2313 (Sorghum bicolor) and the Sudan-grass variety Hiro-1 (S. bicolor), we detected seven QTLs for 100-grain weight. One of them, qGW1, was detected consistently over 2 years and contributed between 20 and 40 % of the phenotypic variation across multiple genetic backgrounds. Using extreme recombinants from a fine-mapping F3 population, we delimited qGW1 to a 101-kb region on the short arm of chromosome 1, containing 13 predicted gene models, one of which was found to be under purifying selection during domestication. However, none of the grain size candidate genes shared sequence similarity with previously cloned grain weight-related genes from rice. This study will facilitate isolation of the gene underlying qGW1 and advance our understanding of the regulatory mechanisms of grain weight. SSR markers linked to the qGW1 locus can be used for improving sorghum grain yield through marker-assisted selection.


Assuntos
Mapeamento Cromossômico , Locos de Características Quantitativas , Sementes/crescimento & desenvolvimento , Sorghum/genética , Cromossomos de Plantas , Produtos Agrícolas/genética , DNA de Plantas/genética , Grão Comestível/genética , Genes de Plantas , Marcadores Genéticos , Fenótipo , Melhoramento Vegetal
18.
Theor Appl Genet ; 128(9): 1765-75, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26024715

RESUMO

KEY MESSAGE: The potential for exploiting heterosis for sorghum hybrid production in Ethiopia with improved local adaptation and farmers preferences has been investigated and populations suitable for initial hybrid development have been identified. Hybrids in sorghum have demonstrated increased productivity and stability of performance in the developed world. In Ethiopia, the uptake of hybrid sorghum has been limited to date, primarily due to poor adaptation and absence of farmer's preferred traits in existing hybrids. This study aimed to identify complementary parental pools to develop locally adapted hybrids, through an analysis of whole genome variability of 184 locally adapted genotypes and introduced hybrid parents (R and B). Genetic variability was assessed using genetic distance, model-based STRUCTURE analysis and pair-wise comparison of groups. We observed a high degree of genetic similarity between the Ethiopian improved inbred genotypes and a subset of landraces adapted to lowland agro-ecology with the introduced R lines. This coupled with the genetic differentiation from existing B lines, indicated that these locally adapted genotype groups are expected to have similar patterns of heterotic expression as observed between introduced R and B line pools. Additionally, the hybrids derived from these locally adapted genotypes will have the benefit of containing farmers preferred traits. The groups most divergent from introduced B lines were the Ethiopian landraces adapted to highland and intermediate agro-ecologies and a subset of lowland-adapted genotypes, indicating the potential for increased heterotic response of their hybrids. However, these groups were also differentiated from the R lines, and hence are different from the existing complementary heterotic pools. This suggests that although these groups could provide highly divergent parental pools, further research is required to investigate the extent of heterosis and their hybrid performance.


Assuntos
Vigor Híbrido , Hibridização Genética , Melhoramento Vegetal , Sorghum/genética , Adaptação Biológica/genética , DNA de Plantas/genética , Etiópia , Genética Populacional , Genoma de Planta , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Modelos Genéticos , Análise de Sequência de DNA
19.
Theor Appl Genet ; 128(3): 489-99, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25575837

RESUMO

KEY MESSAGE: Evaluation of resistance to Pyrenophora teres f. maculata in barley breeding populations via association mapping revealed a complex genetic architecture comprising a mixture of major and minor effect genes. In the search for stable resistance to spot form of net blotch (Pyrenophora teres f. maculata, SFNB), association mapping was conducted on four independent barley (Hordeum vulgare L.) breeding populations comprising a total of 898 unique elite breeding lines from the Northern Region Barley Breeding Program in Australia for discovery of quantitative trait loci (QTL) influencing resistance at seedling and adult plant growth stages. A total of 29 significant QTL were validated across multiple breeding populations, with 22 conferring resistance at both seedling and adult plant growth stages. The remaining 7 QTL conferred resistance at either seedling (2 QTL) or adult plant (5 QTL) growth stages only. These 29 QTL represented 24 unique genomic regions, of which five were found to co-locate with previously identified QTL for SFNB. The results indicated that SFNB resistance is controlled by a large number of QTL varying in effect size with large effects QTL on chromosome 7H. A large proportion of the QTL acted in the same direction for both seedling and adult responses, suggesting that phenotypic selection for SFNB resistance performed at either growth stage could achieve adequate levels of resistance. However, the accumulation of specific resistance alleles on several chromosomes must be considered in molecular breeding selection strategies.


Assuntos
Ascomicetos , Resistência à Doença/genética , Hordeum/genética , Locos de Características Quantitativas , Cruzamento , Mapeamento Cromossômico , Cromossomos de Plantas , Genes de Plantas , Genótipo , Hordeum/microbiologia , Desequilíbrio de Ligação , Fenótipo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
20.
Nat Commun ; 4: 2320, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23982223

RESUMO

Sorghum is a food and feed cereal crop adapted to heat and drought and a staple for 500 million of the world's poorest people. Its small diploid genome and phenotypic diversity make it an ideal C4 grass model as a complement to C3 rice. Here we present high coverage (16-45 × ) resequenced genomes of 44 sorghum lines representing the primary gene pool and spanning dimensions of geographic origin, end-use and taxonomic group. We also report the first resequenced genome of S. propinquum, identifying 8 M high-quality SNPs, 1.9 M indels and specific gene loss and gain events in S. bicolor. We observe strong racial structure and a complex domestication history involving at least two distinct domestication events. These assembled genomes enable the leveraging of existing cereal functional genomics data against the novel diversity available in sorghum, providing an unmatched resource for the genetic improvement of sorghum and other grass species.


Assuntos
Produtos Agrícolas/genética , Grão Comestível/genética , Genoma de Planta/genética , Análise de Sequência de DNA , Sorghum/genética , África , Genótipo , Desequilíbrio de Ligação/genética , Mutação/genética , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...