Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 183: 1236-1247, 2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-33965488

RESUMO

Microencapsulation is a potential biotechnological tool, which can overcome antimicrobial peptides (AMP) instabilities and reduce toxic side effects. Thus, this study evaluates the antibacterial activities of the Ctx(Ile21)-Ha AMP against multidrug-resistant (MDR) and non-resistant bacteria and develop and characterize peptide-loaded microparticles coated with the enteric polymers hydroxypropylmethylcellulose acetate succinate (HPMCAS) and hydroxypropylmethylcellulose phthalate (HPMCP). Ctx(Ile21)-Ha was obtained by solid phase peptide synthesis (SPPS) method, purified and characterized by HPLC and Mass Spectrometry. The peptide exhibited potent antibiotic activities against Salmonella enteritidis, Salmonella typhimurium, Pseudomonas aeruginosa (MDR), Acinetobacter baumannii (MDR), and Staphylococcus aureus (MDR). Ctx(Ile21)-Ha microencapsulation was performed by ionic gelation with high efficiency, maintaining the physical-chemical stability. Ctx(Ile21)-Ha coated-microparticles were characterized by DSC, TGA, FTIR-Raman, XRD and SEM. Hemolytic activity assay demonstrated that hemolysis was decreased up to 95% compared to single molecule. In addition, in vitro release control profile simulating different portions of gastrointestinal tract was performed and showed the microcapsules' ability to protect the peptide and release it in the intestine, aiming pathogen's location, mainly by Salmonella sp. Therefore, use of microencapsulated Ctx(Ile21)-Ha can be allowed as an antimicrobial controller in monogastric animal production as an oral feed additive (antimicrobial controller), being a valuable option for molecules with low therapeutic indexes or high hemolytic rates.


Assuntos
Alginatos/química , Metilcelulose/análogos & derivados , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Acinetobacter baumannii/efeitos dos fármacos , Composição de Medicamentos , Aditivos Alimentares/química , Aditivos Alimentares/farmacologia , Hemólise , Metilcelulose/química , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Proteínas Citotóxicas Formadoras de Poros/química , Pseudomonas aeruginosa/efeitos dos fármacos , Salmonella/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
2.
Langmuir ; 37(13): 3836-3848, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33770439

RESUMO

Since the optical and electrical properties of organic thin films devices depend on their supramolecular arrangement and the molecular chemical structure, the understanding of such characteristics is essential for the optimization of these devices. In this study, we determine the supramolecular arrangement of thin films produced using the Langmuir-Schaefer (LS) technique and explain how its supramolecular arrangement is affected by the molecular chemical structure using two perylene derivatives: bis-butylimide (BuPTCD) and bis-phenethylimide (PhPTCD). The optical absorption measurements reveal that both films grow homogeneously and indicate that the presence of H aggregates (forbidden emission) is higher for BuPTCD LS film than for PhPTCD LS film. Atomic force microscopic analysis shows that the PhPTCD LS film is rougher than the BuPTCD film. In addition, FTIR analyses indicate that both films have head-on molecular organization. XRD patterns reveal that both the BuPTCD LS film and the PhPTCD LS film are crystalline, but that crystallinity is more prevalent in the BuPTCD LS film. Thus, the results show that the difference presented in the chemical structures leads the films to have different supramolecular arrangements, with consequences for their optical properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...