Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mitochondrion ; 60: 59-69, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34303005

RESUMO

ß-Catenin signaling pathway regulates cardiomyocytes proliferation and differentiation, though its involvement in metabolic regulation of cardiomyocytes remains unknown. We used one-day-old mice with cardiac-specific knockout of ß-catenin and neonatal rat ventricular myocytes treated with ß-catenin inhibitor to investigate the role of ß-catenin metabolism regulation in perinatal cardiomyocytes. Transcriptomics of perinatal ß-catenin-ablated hearts revealed a dramatic shift in the expression of genes involved in metabolic processes. Further analysis indicated an inhibition of lipolysis and glycolysis in both in vitro and in vivo models. Finally, we showed that ß-catenin deficiency leads to mitochondria dysfunction via the downregulation of Sirt1/PGC-1α pathway. We conclude that cardiac-specific ß-catenin ablation disrupts the energy substrate shift that is essential for postnatal heart maturation, leading to perinatal lethality of homozygous ß-catenin knockout mice.


Assuntos
Metabolismo Energético/genética , Metabolismo Energético/fisiologia , Deleção de Genes , Mitocôndrias/metabolismo , Miócitos Cardíacos/metabolismo , beta Catenina/metabolismo , Animais , Animais Recém-Nascidos , Regulação para Baixo , Camundongos , Camundongos Knockout , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , beta Catenina/genética
2.
Life (Basel) ; 10(12)2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33348907

RESUMO

The role of canonical Wnt signaling in metabolic regulation and development of physiological cardiac hypertrophy remains largely unknown. To explore the function of ß-catenin in the regulation of cardiac metabolism and physiological cardiac hypertrophy development, we used mice heterozygous for cardiac-specific ß-catenin knockout that were subjected to a swimming training model. ß-Catenin haploinsufficient mice subjected to endurance training displayed a decreased ß-catenin transcriptional activity, attenuated cardiomyocytes hypertrophic growth, and enhanced activation of AMP-activated protein kinase (AMPK), phosphoinositide-3-kinase-Akt (Pi3K-Akt), and mitogen-activated protein kinase/extracellular signal-regulated kinases 1/2 (MAPK/Erk1/2) signaling pathways compared to trained wild type mice. We further observed an increased level of proteins involved in glucose aerobic metabolism and ß-oxidation along with perturbed activity of mitochondrial oxidative phosphorylation complexes (OXPHOS) in trained ß-catenin haploinsufficient mice. Taken together, Wnt/ß-catenin signaling appears to govern metabolic regulatory programs, sustaining metabolic plasticity in adult hearts during the adaptation to endurance training.

3.
Pflugers Arch ; 470(10): 1501-1502, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29971601

RESUMO

The original version of this article unfortunately contained a mistake. The published paper presented an incorrect version of Table 1. The corrected Table is given here.

4.
Pflugers Arch ; 470(10): 1485-1499, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29923116

RESUMO

αE-catenin is a component of adherens junctions that link the cadherin-catenin complex to the actin cytoskeleton. The signaling function of this protein was recently revealed. In the present study, we investigated the role of αE-catenin in the pathogenesis of heart failure. We mated αE-catenin conditional knockout mice with αMHC-Cre mice and evaluated their mutant offspring. We found that αE-catenin knockout caused enlargement of the heart and atria, fibrosis, the upregulation of hypertrophic genes, and the dysregulation of fatty acid metabolism via the transcriptional activity of Yap and ß-catenin. The activation of canonical Wnt and Yap decreased the activity of main regulators of energy metabolism (i.e., adenosine monophosphate-activated protein kinase and peroxisome proliferator-activated receptor α) and dysregulated hypertrophic pathway activity (i.e., phosphatidylinositide 3-kinase/Akt, cyclic adenosine monophosphate/protein kinase A, and MEK1/extracellular signal regulated kinase 1/2). The loss of αE-catenin also negatively affected cardio-hemodynamic function via the protein kinase A pathway. Overall, we found that the embryonic heart-specific ablation of αE-catenin leads to the development of heart failure with age and premature death in mice. Thus, αE-catenin appears to have a crucial signaling function in the postnatal heart, and the dysfunction of this gene causes heart failure through canonical Wnt and Yap activation.


Assuntos
Deleção de Genes , Insuficiência Cardíaca/genética , Miocárdio/metabolismo , alfa Catenina/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ciclo Celular , Metabolismo Energético , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Hemodinâmica , Metabolismo dos Lipídeos , Camundongos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fosfoproteínas/metabolismo , Via de Sinalização Wnt , Proteínas de Sinalização YAP , alfa Catenina/metabolismo , beta Catenina/metabolismo
5.
Exp Biol Med (Maywood) ; 236(7): 816-22, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21680756

RESUMO

Cell adhesion, mediated by N-cadherin, is critical for embryogenesis since N-cadherin-null embryos die during mid-gestation with multiple developmental defects. To investigate the role of N-cadherin in heart muscle development, N-cadherin was specifically deleted from myocardial cells in mice. The structural integrity of the myocardial cell wall was compromised in the N-cadherin mutant embryos, leading to a malformed heart and a delay in embryonic development. In contrast, cardiac-specific deletion of αE-catenin, found in adherens junctions, or ß-catenin, did not cause any morphological defects in the embryonic heart, presumably due to compensation by αT-catenin that is normally found in intercalated disks and γ-catenin (plakoglobin), respectively. Embryos lacking ß-catenin in the heart also exhibited a cardiac defect, but only later in development resulting in partial lethality. These genetic studies underscore the importance of the N-cadherin/catenin complex in cardiogenesis.


Assuntos
Caderinas/metabolismo , Coração/embriologia , Organogênese/efeitos dos fármacos , beta Catenina/metabolismo , Animais , Caderinas/deficiência , Deleção de Genes , Camundongos , beta Catenina/deficiência
6.
Cell Biol Int ; 29(1): 29-32, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15763496

RESUMO

The biological activity of Sambucus nigra bark lectin on Chinese hamster cells in vitro was investigated by comet-assay and cytotoxicity testing. Mitogenic properties at the concentrations 0.063-0.25 microg/ml (but not higher) were found, and the induction of DNA breaks at concentrations 0.5 microg/ml and higher is demonstrated. S. nigra bark lectin at mitogenic concentrations decreased the level of nickel-induced DNA damage. The character and mechanism of this lectin protective activity was probably related to the induction of DNA reparation in the cells, decreasing nickel uptake in cells, and non-specific binding of nickel ions by protein molecules.


Assuntos
Antimutagênicos/farmacologia , Dano ao DNA/efeitos dos fármacos , Reparo do DNA , Lectinas de Plantas/farmacologia , Animais , Células CHO , Ensaio Cometa , Cricetinae , Mitógenos/farmacologia , Níquel/metabolismo , Níquel/farmacologia , Proteínas Inativadoras de Ribossomos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...